LES CÂBLES ET LA TRANSMISSION

Supports de transmission

Présentée par : MEBTOUCHE

Sommaire:

Chapitre 1: Introduction

Chapitre 2: Notion de signaux

Chapitre 3: Adaptation des signaux aux supports

Chapitre 4: Caractéristiques communes des supports de transmission

Chapitre 5: Principaux supports de transmission.

Sommaire:

Chapitre 1: Introduction

Chapitre 2: Notion de signaux

Chapitre 3: Adaptation des signaux aux supports

Chapitre 4: Caractéristiques communes des supports de transmission

Chapitre 5: Principaux supports de transmission.

Introduction au module

Description du module

Dans le contexte du développement exceptionnel des télécommunications, le module aura pour but de présenter l'intérêt du support optique pour la transmission de l'information. La description des éléments du système de télécommunication optique ainsi que les principes de fonctionnement seront abordés.

Les objectifs généraux de ce module sont les suivants :

Saisir la spécificité du support optique Acquérir des notions d'optique guidée Connaître les principaux composants optiques Comprendre le fonctionnement d'un système de transmission optique

Chapitre 1: Introduction

L'information qui transite sur les réseaux de télécommunication consiste en messages de types divers : textes, sons, images fixes ou animées, vidéo, etc.... lorsque les interlocuteurs sont en présence. Quand ils sont distants l'un de l'autre, l'emploi des réseaux de télécommunication est une manière moderne de résoudre la transmission d'informations.

Toutefois, pour les nécessités du transport, la transmission d'un message nécessite un encodage en signaux de type électrique ou électromagnétique :

Source d'information Destinataire Transducteur Transducteur Émetteur Récepteur Canal Système de télécommunications

1-1 Historique des télécommunications

- <u>1837</u>: Samuel Morse: système de transmission de lettres de l'alphabet) *Télégraphe: Codage des lettres par pts et traits de longueurs différen-*tes (correspondant à des durées différentes) en optimisant le temps de transmission) *Théorie de l'Information*
- 1864 : Equations de Maxwell: prédiction de l'existence d'ondes radio
- 1865 : 1ère conférence de l'Union Télégraphique Internationale
-) développement des télécommunications sur le plan international
- 1870 : transmissions télégraphiques à longue distance (plusieurs milliers de km)
- 1874: Invention du multiplexage temporel par Baudot
- <u>1876</u>: Graham Bell: brevet de système électrique de transmission du son) *Téléphone*
- 1887 : Hertz : démonstration de l'existence des ondes radios

1-2 Historique des supports de transmissions

1. Le fil de cuivre

Le fil de fer cède sa place au fil de cuivre pour transformer des messages

2. Les ondes radio

Grâce aux ondes électromagnétiques, on peut télé communiquer sans support physique. Pour qu'un signal se propage dans l'air, il faut une antenne.

3. Le câble coaxial

En 1960 on peut transmettre dans des bandes beaucoup plus larges que les paires de fils. Le câble coaxial est rond et il est muni de 2 conducteurs généralement en cuivre, le premier au centre est entouré d'un isolant, la deuxième en forme de tube les recouvre.

4. La fibre optique

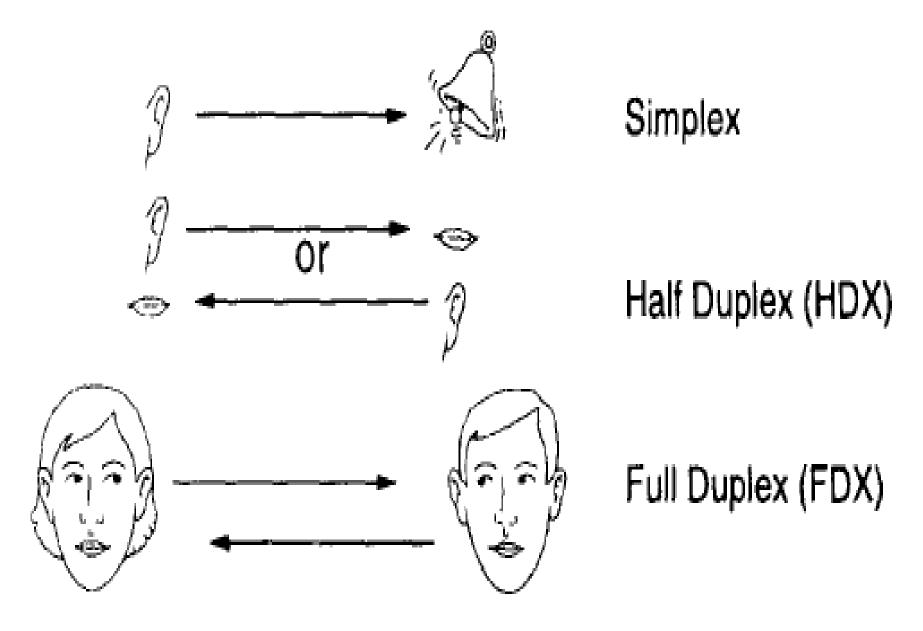
C'est un fil de verre, fin comme un cheveu, dans lequel sont véhiculés des signaux lumineux produits à partir de silice

5. Les satellites à orbite basse

Ils tournent autour du globe à basse altitude, entre 300 et 1 500 km; on les appelle les observateurs du changement, car ils sont chargés d'observer les changements environnementaux.

6. Les satellites à orbite géostationnaire

Les satellites à orbite géostationnaire au nombre de 500 sont juchés au-dessus des océans Pacifique, Atlantique et Indien. Ces satellites sont principalement chargés de la diffusion des différents signaux dont ceux du téléphone, de la radio et de la télévision à partir d'un support constitué d'ondes électromagnétiques.


1.3 Méthodes de transmission

Types de transmission :

- simplex : communication dans une seule direction (ex télécommande)
- -half-duplex: communication possible dans les 2 sens, mais pas simultanément (partage d'un même canal)
- -<u>full-duplex</u> : communication dans les 2 sens simultanément, par séparation du canal de transmission

Méthodes de Duplex:

- -<u>fréquentiel (FDD)</u> : émission sur des bandes de fréquences différentes (ex : GSM sur canaux montant et descendant)
- -temporel (TDD): émission sur le même canal fréquentiel, à des instants successifs (slots). Utilisation récente pour applis wireless indoor sur zone très petite (temps de propagation faibles)

1.3 Méthodes de transmission

Méthodes d'accès multiple :

- -<u>TDMA</u>: les utilisateurs se partagent des intervalles de temps réguliers pour transmettre (ex : GSM)
- -<u>FDMA</u>: les utilisateurs se partagent la bande de fréquence
- -<u>CDMA</u>: chevauchement des utilisateurs en temps et fréquences, séparation des utilisateurs par attribution de codes orthogonaux
- -<u>SDMA</u>: utilisation d'antennes multiples et polarisations différentes attribuées aux utilisateurs

Sommaire:

Chapitre 1: Introduction

Chapitre 2: Notion de signaux

Chapitre 3: Adaptation des signaux aux supports

Chapitre 4: Caractéristiques communes des supports de transmission

Chapitre 5: Principaux supports de transmission.

Chapitre 2: Notions de signaux

<u>Définition</u>: un signal est une information qui transite a travers un canal de communication. Il permet de transmettre une donnée brute entre deux machines de manière adaptée au support de communication.

Un signal (s(t)) est caractérisé par son amplitude (A), sa fréquence (f) et sa phase (φ)

$$s(t) = A \sin(2\pi f t + \varphi).$$

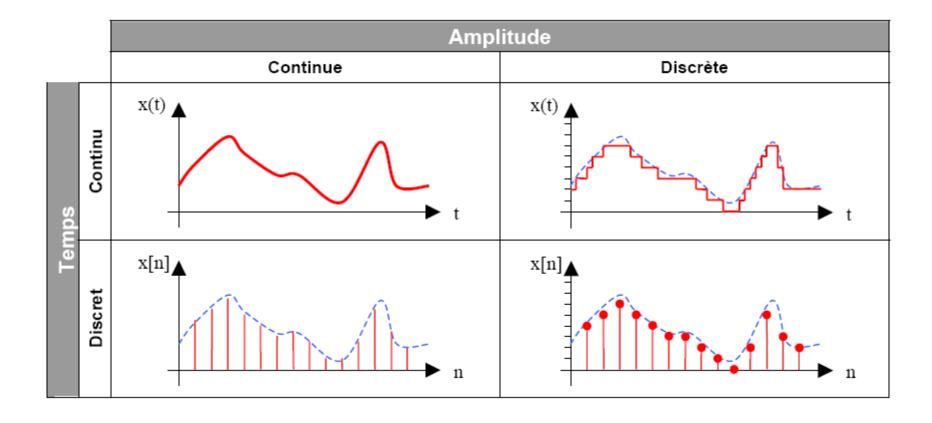
Le signal est transportée sous forme d'une onde faisant varier une des caractéristiques physiques du support:

ddp électrique (votls)

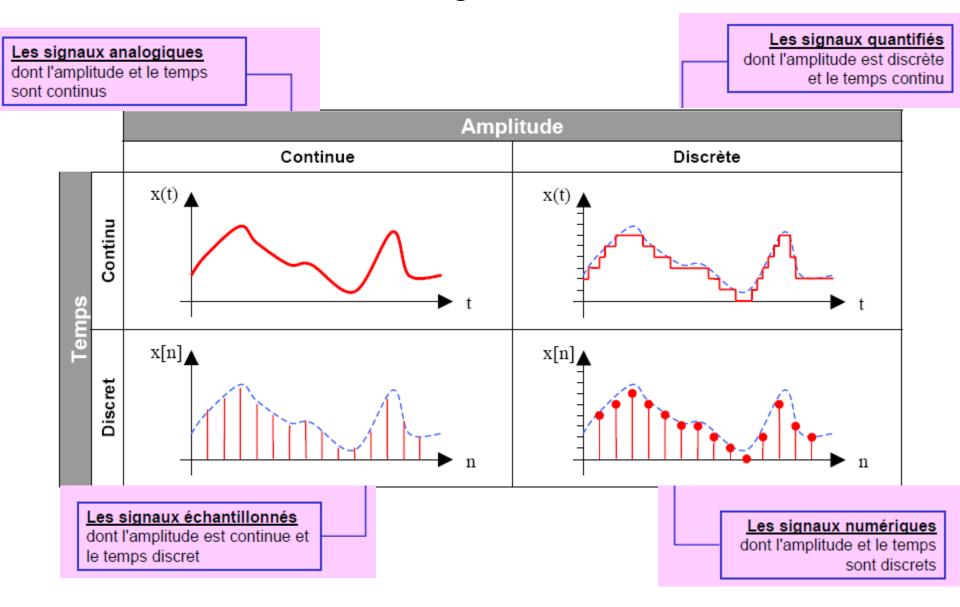
Intensité lumineuse (fibre optique) (A)

Classification des signaux:

Classification phénoménologique


On considère la nature de l'évolution du signal en fonction du temps. Il apparaît deux types de signaux :

Les signaux déterministes : ou signaux certains, leur évolution en fonction du temps peut être parfaitement modélisée par une fonction mathématique. On retrouve dans cette classe les signaux périodiques, les signaux transitoires, les signaux pseudoaléatoires, etc...


Les signaux aléatoires : leur comportement temporel est imprévisible. Il faut faire appel à leurs propriétés statistiques pour les décrire. Si leurs propriétés statistiques sont invariantes dans le temps, on dit qu'ils sont stationnaires.

Classification morphologique

On distingue les signaux à évolution temporelle continue et des signaux à évolution temporelle discrète ainsi que ceux dont l'amplitude est continue ou discrète.

On obtient donc 4 classes de signaux :

Classification énergétique

Les signaux à énergie finie: il possède une puissance moyenne nulle et une énergie finie.

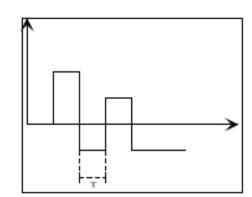
Les signaux à puissance finie: il possède énergie infinie et sont physiquement irréalisable.

Classification spéctrale

Signaux à bases fréquence

Signaux à haute fréquence

Classification dimensionnelle


Signaux à une dimension

Signaux à deux dimensions

Caractéristiques d'un signal numérique

• Moment élémentaire T (en secondes)

Durée pendant laquelle le signal n'est pas modifié.

Valence V

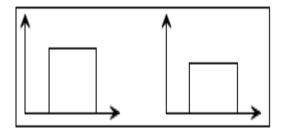
Nombre d'états discernables utilisés par le signal. Bivalent (V=2). Multivalent (V=2k).

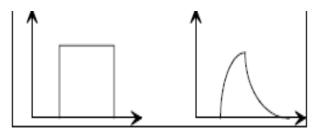
Rapidité de modulation R(en bauds)

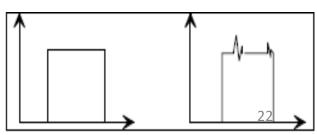

R = 1/T Nombre de moments élémentaires par seconde.

 <u>Débit binaireD</u>(en bits par seconde : bps) c'est le nombre de bits transmis par seconde

D = R log2V c'est le théorème de NYQUIST


Tout signal périodique peut être considère comme une infinité de signaux sinusoïdaux. Chaque composante peut être représentée par une raie de fréquence.


L'ensemble des raies de fréquence d'un signal constitue <u>le spectre de</u> <u>fréquences</u> du signal. L'espace de fréquences occupe par le spectre est appelé la <u>largeur de bande du signal</u>.



Exemple d'un spectre de fréquences

- Atténuation et distorsion du signal (limitées par le choix du support): L'atténuation se mesure en dB (décibels) : $N = 10 \log_{10} \left(\frac{1}{Pb} \right)$
- -bruit: perturbations extérieures (variation thermique, ıntertérence électromagnétique) et diaphonie (due aux champs magnétiques des autres conducteurs d'un câble)
- -<u>collision</u> : des ordinateurs émettent en même temps sur le même support
- -gigue : fluctuation du signal numérique dans le temps ou en phase due aux retards dans les transmissions dû aux composants intermédiaires
- -horloges des émetteurs et récepteurs non synchronisées

Sommaire:

Chapitre 1: Introduction

Chapitre 2: Notion de signaux

Chapitre 3: Adaptation des signaux aux supports

Chapitre 4: Caractéristiques communes des supports de transmission

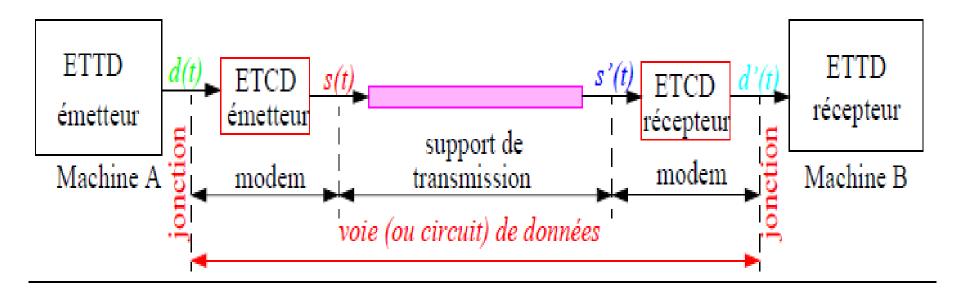
Chapitre 5: Principaux supports de transmission.

Chapitre 3: Adaptation des signaux aux supports

•Que doit-on assurer ?

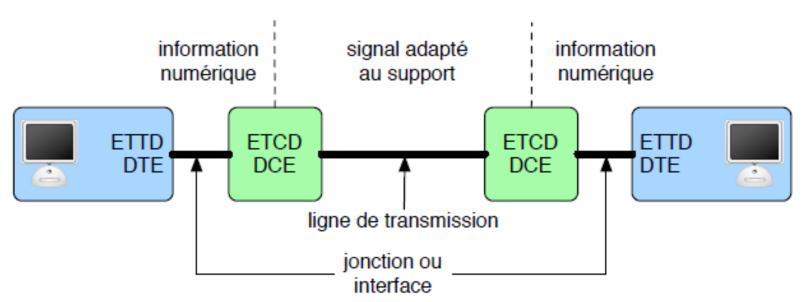
Une technique de transmission doit faire en sorte que les fréquences utilisées par un signal (spectre du signal) se situent dans la bande passante du support de transmission

• Quelle solution à apporter ?


Mettre en œuvre des techniques d'adaptation du signal au support de communication

- 1.transmission en bande de base
- 2.transmission en large bande
- Comment les mettre en œuvre ?

Utiliser des équipements spéciaux : les ETCDs, Les ETTDs


Principaux éléments intervenant dans la transmission

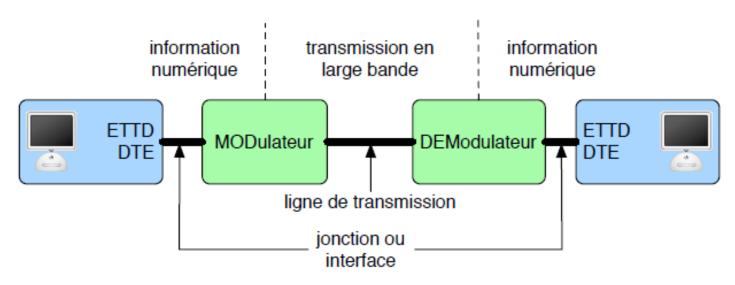
- o l'ETCD (équipement terminal de communication de données)
- équipement spécifique chargé d'adapter les données à transmettre au support de communication
- o l'ETTD (équipement terminal de traitement de données)
- l'ordinateur!
- o Le support de transmission

- Pour pallier ces problèmes, on utilise des techniques
- -de modulation : pour adapter le signal au support,
- -de multiplexage : pour rentabiliser l'utilisation du support.
- Cela nécessite l'utilisation d'equipements spéciaux : les ETCDs. Les ETTDs

Une transmission de données met en œuvre des calculateurs d'extremite et des éléments d'adaptation du signal

Un Equipement <u>Terminal de Traitement de Données (ETTD)</u> ou Data Terminal Equipment (DTE) contrôle les communications. Un Equipement <u>Terminal de Circuit de Données (ETCD)</u> ou Data Circuit Equipment (DCE) réalise l'adaptation du signal entre l'ETTD et le support de transmission.

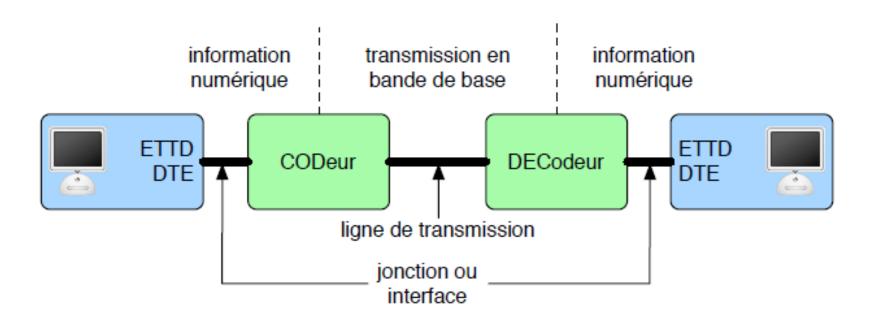
Les caractéristiques des ETCD sont liées a l'organisation fonctionnelle et physique des échanges. Il faut prendre en compte :


<u>le sens de transmission</u>: unidirectionnelle (simplex), a l'alternat (half duplex) ou bidirectionnelle (full duplex).

<u>le nombre de bits transmis en même temps</u>: transmission parallèle (efficace mais problèmes de diaphonie et de propagation non homogène) ou transmission série (qui est plus adaptée aux longues distances).

<u>le type de synchronisation des horloges</u> : une transmission correcte des données nécessite la synchronisation de l'horloge du récepteur sur celle de l'emetteur. Deux possibilités, la transmission synchrone ou asynchrone. Besoin de protocoles spécifiques (SLIP, PPP, HDLC, . .

<u>le mode de transmission électrique</u> : asymétrique ou symétrique.


L'ETCD est un modulateur/demodulateur. Il transforme le signal numérique en un signal sinusoïdal module (par fréquence/amplitude/phase) plus résistant que le signal en bande de base. Il permet donc d'atteindre des distances plus importantes. De plus, une transmission en large bande permet le multiplexage spatial.

La transmission en large bande translate le spectre du signal a émettre dans une bande de fréquence mieux admise par le système.

29

La transmission en bande de base consiste a modifier légèrement (on dit transcoder) le signal émis par l'ETTD. Ce mode de transmission est peu adapte aux longues distances.

L'ETCD est un codeur/decodeur. Il a essentiellement pour objet de coder le signal pour supprimer les composantes continues et de maintenir la synchronisation de l'horloge de réception.

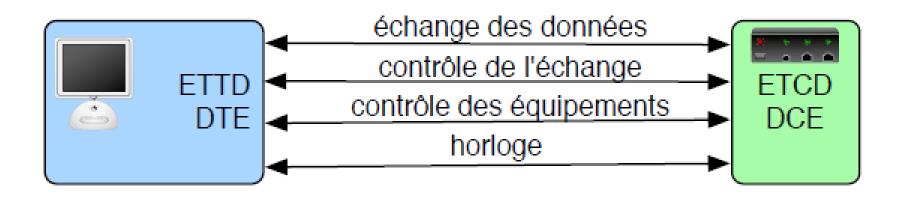

Canal de Transmission : (ou support physique)

Coaxial, Fibre optique ...

ETTD:

Equipement Terminal de Transmission de Données

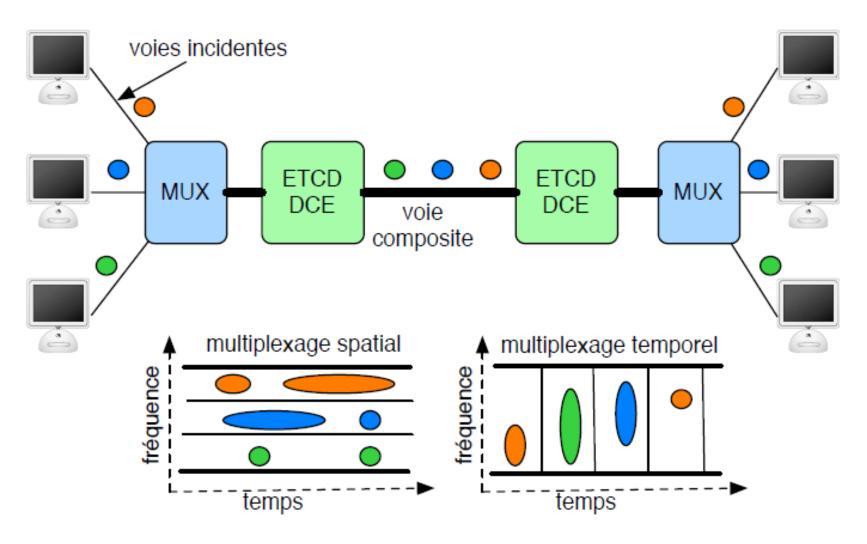
Nécessité d'un modem


ETCD:

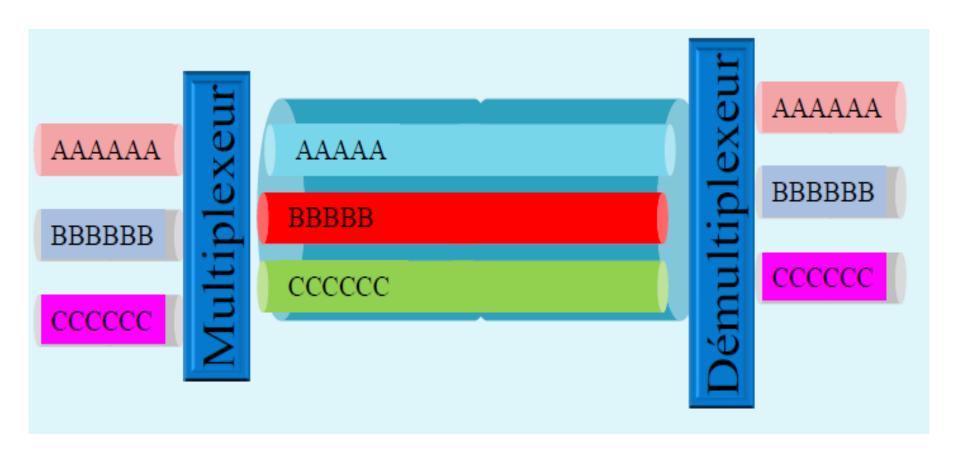
Equipement Terminal de Circuit de Données

Modem:

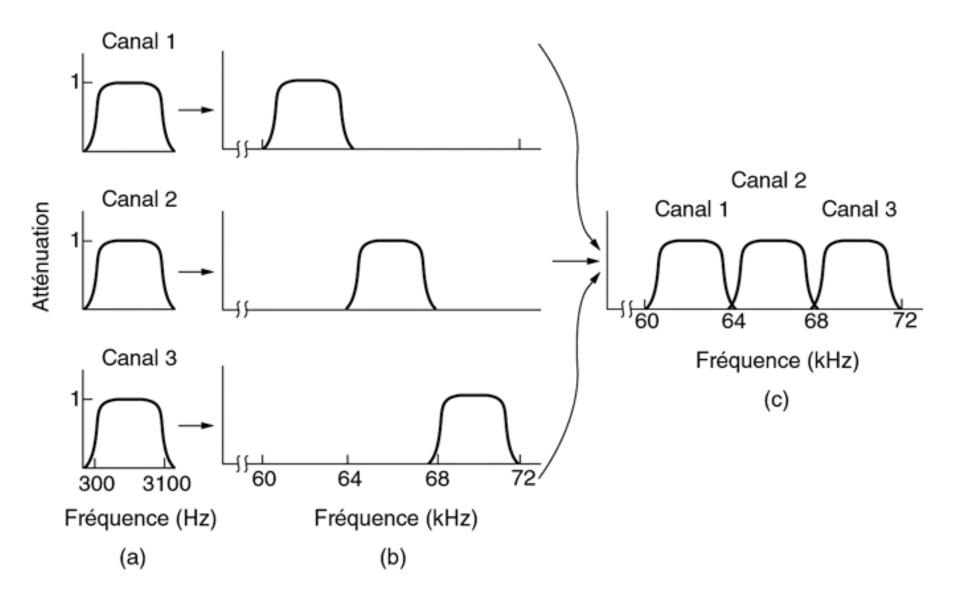
Modulateur / Démodulateur


Canal de Transmission : Ligne téléphonique La jonction ETTD/ETCD définit un ensemble de règles (protocole) destinées a assurer la connectivite et le dialogue entre ETTD et ETCD, la synchronisation des horloges, le transfert des données et le contrôle de celui-ci.

Multiplexage

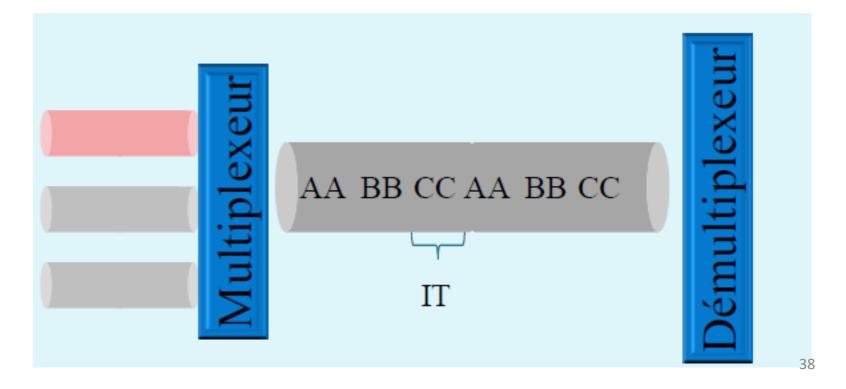

- -Objectif: optimiser l'usage des canaux de transmission pour un transit simultané du maximum d'informations ⇒ partage (multiplexage) du support physique de transmission entre plusieurs signaux.
- -Ces techniques peuvent se classer en trois grandes catégories:
 - multiplexage fréquentiel :
 - MRF (Multiplexage par Répartition de Fréquence)
 - FDM (Frequency Division Multiplexing)
 - multiplexage temporel :
 - MRT (Multiplexage à Répartition dans le Temps)
 - TDM (Time Division Multiplexing)
 - multiplexage par code:
 - -CDM (Code Division Multiplexing)

Deux techniques de multiplexage

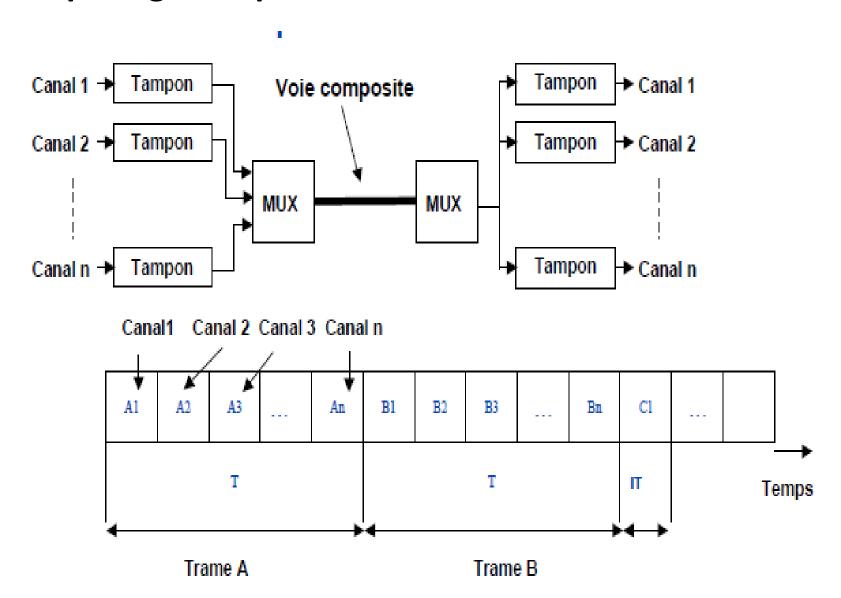


Multiplexage fréquentiel

Principe- Découpe la bande passante (large) en plusieurs sous bande (étroite). Chaque sous bande est affectée à une voie de transmission.



Multiplexage fréquentiel



Multiplexage temporel

Principe: Des bits (ou des octets) sont prélevés successivement sur les différentes voies reliées au multiplexeur pour construire Un train de bits (ou d'octets) qui constituera le signal composite. a chaque voie est affecté un intervalle de temps (IT), intervalle pendant lequel elle envoie.

Multiplexage temporel

Sommaire:

Chapitre 1: Introduction

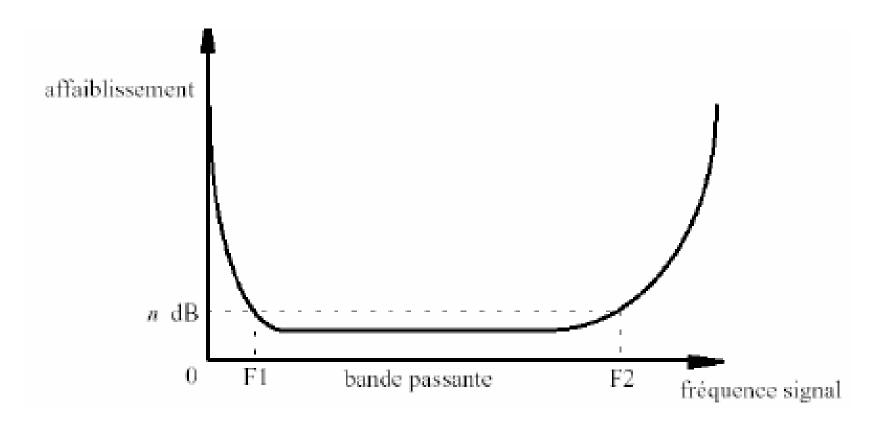
Chapitre 2: Notion de signaux

Chapitre 3: Adaptation des signaux aux supports

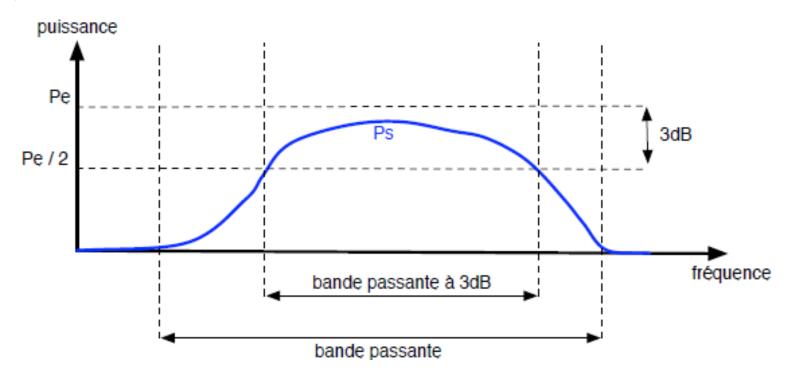
Chapitre 4: Caractéristiques communes des supports de transmission

Chapitre 5: Principaux supports de transmission.

<u>Chapitre 4</u>: Caractéristiques communes des supports de transmission


Nous appelons support de transmission tout moyen permettant de transporter des données sous forme de signaux de leur source vers leur destination.

Deux types de supports :


- -<u>les supports limites</u>: la paire torsadée, le câble coaxial, la fibre optique ;
- -<u>les supports non limites</u> tels que l'air (infrarouges ou ondes radios). Caractéristiques communes a tout support a prendre en compte :
 - -la bande passante
 - -le bruit et la distorsion
 - -la capacité
 - -l'impédance caractéristique

Bande passante W

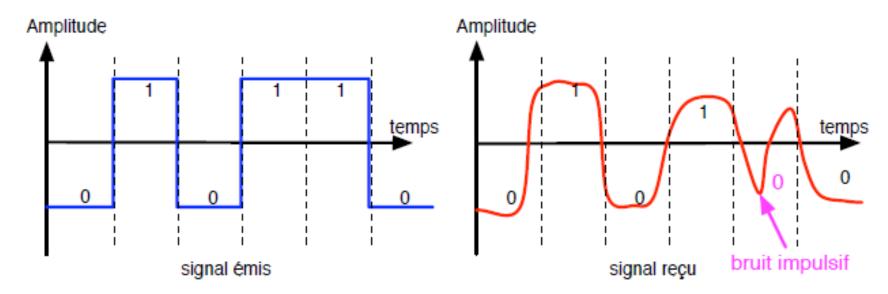
La bande passante d'un canal de transmission est la bande de fréquence dans laquelle les signaux sont soumis à un affaiblissement inférieur ou égal à n db.

En général, on caractérise un support par sa bande passante a 3dB (décibels) : c'est la plage de fréquence dans laquelle les signaux appliques a l'entrée du support subissent un affaiblissement inferieur a 3 dB.

L'affaiblissement A (en dB) d'un signal est donne par la formule suivante : A = 10*log Pe/P s Pour que A < 3dB, il faut donc que Ps > Pe/2.

Bande passante et rapidite de modulation maximale

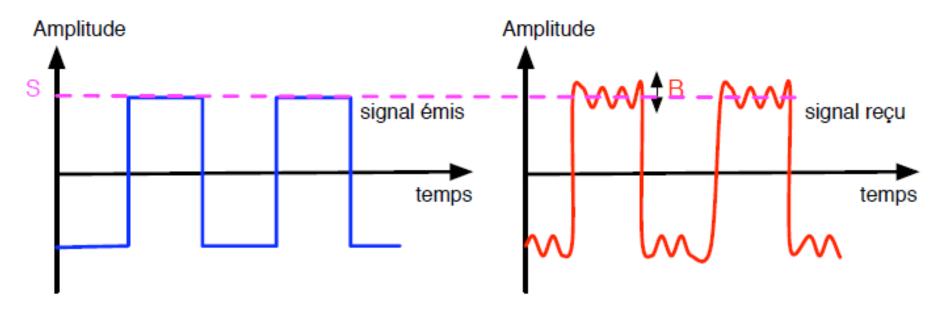
Le nombre maximal de modulation d'un signal par unite de temps est lie a la bande passante du support de transmission par le critere de Nyquist :


 $M_{max} \leq 2.BP$

ou *BP* est la bande passante et *Mmax* le nombre de modulation maximal.

Bruits et distorsions

La distorsion du signal peut affecter ce signal jusqu'a le rendre non reconnaissable par le récepteur.


Les bruits impulsionnels est une perturbation brève provenant de l'éxterieur. D'intensité élevée, ils peuvent générer des erreurs de transmission.

Ces phénomènes peuvent être limites par le choix du support de transmission

45

Le bruit blanc provient de l'agitation thermique des électrons. Il est généralement d'amplitude faible et est peu gênant pour les transmissions.

Le rapport entre la puissance (S) du signal transmis et la puissance (B) du bruit s'appelle le rapport signal sur bruit. Si il s'exprime en dB, il vaut : $10\log_{10}S/B$

Bruits et nombre de valence

Shannon à montré, qu'en milieu perturbé, le nombre de La valence maximale vmax d'un support de transmission est donnée par la Relation:

$$v_{max} = \sqrt{1 + S/B}$$
.

La capacité

La capacité (ou débit binaire maximal) d'un support de transmission représente la quantité d'information maximale transportée par unité de temps.

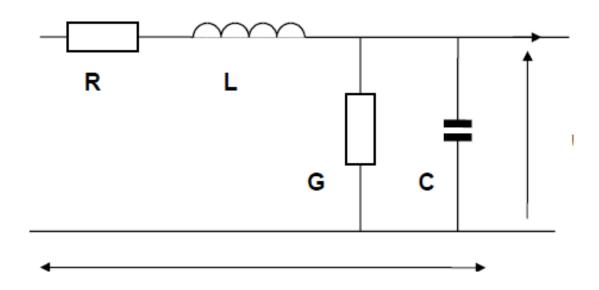
Le théorème de Shannon-Hartley donne le débit maximum sur une ligne bruité:

$$D_{max} = M_{max} * \log_2 v_{max} = BP * \log_2(1 + S/B)$$

ou D est le debit (en bit/s), BP est la bande passante du support (en Hz) et S/B est le rapport signal sur bruit (exprime en valeur et non en dB).

Exercice 01: Soit une liaison téléphonique avec une bande passante de 3100 Hz et un rapport S/B correspondant a 32 dB. Quelle capacité possède cette liaison téléphonique ?

Exercice 02:Sur un support exempt de bruit avec une bande passante entre 500 et 2900 Hz, on dispose d'un modem qui utilise une modulation avec deux états par phase.


- 1. Quelle est la rapidité de modulation du modem?
- 2. calculez le débit ainsi assuré.
- 3. Que devient le débit si le support est perturbé e par un bruit tel que le rapport signal sur bruit est `a 26 dB?

Exercice 03: Soit un support de transmission caractérise par ses fréquences extrêmes : 60 kHz - 108 kHz et par un rapport signal / bruit de 37 dB.

- 1. Quel est le débit binaire théorique pouvant être obtenu sur ce support ?
- 2. Même question avec un rapport signal/bruit de 40 dB?
- 3. Conclure.

l'impédance caractéristique

Une ligne peut être assimilée à une succession de tronçons de longueur dx. Le quadripôle équivalent est composé des paramètres r,l,g,c (R,L,G,C pour dx=1m).

- R Résistance des conducteurs (Ω/m)
- L Inductance (H/m)
- G Conductance (fuite des isolants) (Ω -1/m)
- C Capacité (entre les conducteurs) (F/m)

Paramètres primaires

Résistance

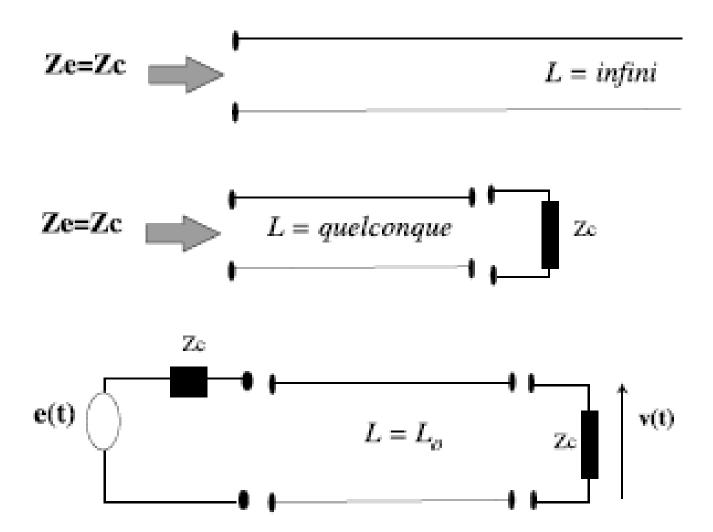
L'atténuation d'une ligne dépend essentiellement de R (pertes joules), R dépend :

- de la résistivité du matériau (généralement du cuivre dont ρ = 1.65 10-8 Ω .m à 1.85 10-8 Ω .m selon la composition, habituellement 1.7 10-8 Ω .m).
- de la section (R=ρ/s).
- de la température.
- de la fréquence (effet pelliculaire).

Paramètres secondaires

Coefficient de propagation

$$\gamma = \sqrt{(R + jL\omega)(G + jC\omega)} = \alpha + j\beta$$


- atténuation (neper/m)
- β Propagation ou déphasage (rd/m) d'où on peut tirer v = ω/β

Impédance caractéristique (indépendant de la longueur)

$$Zc = \sqrt{\frac{R + jL\omega}{G + jC\omega}}$$
 en Ω , avec R=G=0 (pertes nulles) on a $Zc = \sqrt{\frac{L}{C}}$

Zc: impédance caractéristique, est impédance d'une ligne de longueur infinie. Donc une ligne de longueur infinie refermé sur un récepteur d'impédance « Zr » tel que: Zc=Zr, se comporte comme une ligne infinie on dit alors la ligne est adaptée (adaptation d'impédance).

Toute répture d'impédance (Zc≠Zr) provoque une réflexion d'une partie de l'énergie incidente. Cette énergie (onde réflexion ou echo) se combine à l'énergie incidente pour fournir des ondes stationnaires. Pour éviter ces réflexion parasites, il est nécessaire tout au long de la ligne et a chaque raccordement d'un nouvel élement de la liaison de réaliser la continuité de l'impédance, c'est l'adaptation d'impédance.

Pour R >> wL

$$Z_c \approx \sqrt{\frac{R}{j\omega C}} = \sqrt{\frac{R}{\omega C}} \exp(-j\pi/4)$$

 $|Z_c|$ proportionnel à $\frac{1}{\sqrt{f}}$
 $phase(Z_c) \rightarrow -\pi/4$
 $\gamma = \sqrt{jR\omega C} = \sqrt{\frac{R\omega C}{2}}(1+j)$
 $\alpha = \sqrt{\frac{R\omega C}{2}}$ proportionnel à \sqrt{f}
 $\beta = \sqrt{\frac{R\omega C}{2}}$ proportionnel à \sqrt{f}

Conséquences:

- impédance difficile à synthétiser (dépend de f) ;
- -canal avec distorsion (il faudrait α indépendant de f, et θ proportionnel à f.

Pour R << wL

$$Z_c \approx \sqrt{\frac{L}{C}}$$
 réelle pure et constante par rapport à f

$$\alpha = \frac{R}{2} \sqrt{\frac{C}{L}} \text{ constant par rapport à } f \text{ (si pas d'effet pelliculaire)}$$

$$\beta = \omega \sqrt{LC} \text{ proportionnel à } f$$

Conséquences:

-canal (quasi) parfait