ANNEXE

Jeu d’instructions
du microprocesseur 68000
Motorola

INSTRUCTION SET DETAILS

This appendix contains detailed information about each instruction in the M68000 instruc-
tion set. Instruction descriptions are arranged in alphabetical order with the mnemonic
heading set in large bold type for easy reference.

B.1 ADDRESSING CATEGORIES

Effective address modes can be categorized by the ways in which they are used. The
following classifications are used in the instruction definitions.

Data If an effective address mode is used to refer to data operands, it is con-
sidered a data addressing effective address mode.

Memory If an effective address mode is used to refer to memory operands, it is
considered @ memory addressing effective address mode.

Alterable If an effective address mode is used to refer to alterable (writeable) operands,
it is considered an alterable addressing effective address mode.

Contral If an effective address mode is used to refer to memory operands without
associated sizes, it is considered a control addressing effective address
mode.

Table B-1 shows the categories of each of the effective address modes.

Table B-1. Effective Add Mode Categories

[AddressModes | Mode | Register | Data | Memory | Contrel | Atterable Syntax
- |
Data Register Direct | 000 reg. no, X = = | X Dn
Address Register Direct 001 rag. no. — - — x An
| Address Register Indirect 010 | reg. no x | x| x x {An)
Address Register Indirect
with Postincrement on reg. no. x x — x LAn} +
| Address Register Indirect |
with Pradecrament 100 | reg no. x x - X {An]
Address Register Indirect 101 | reg.no. | X x x X {dyg.An} or
with Displacement 1 __diglAn)
Address Register Indirect 1o g, no. X X x X Idg.An Xn) or
I_w«th Indax) dglAn,Xn)
Absalute Short m 000 X X X X | Loxh W
| Absolute Lang Z____1 1 001 X X X | X [l L
Program Counter Indirect m | x | X x — (d16.PCl or
with Displacement | _ diglPC)
Pragram Counter Indirect m o X X x - 1dg,PC.Xn) or
with Index dg(PC.Xn)
ill!_!mediate m 100 x x - - #idata)

These ies can be combined to define additi more restrictive classifications. For
example, the instruction descriptions use such classificati as y alterable and
data alterable. Memory alterable memory refers to addressing modes that are both alterable
and memory add Data refers to addressing modes that are both data and
alterable,

B.2 INSTRUCTION DESCRIPTION

The instruction descriptions in this section contain detailed information about the instruc-
tions. The format of these descriptions is shown in Figure B-1.

B.3 OPERATION DESCRIPTION DEFINITIONS

The following notation is used in the instruction descriptions.

OPERANDS
An —Address register
Dn —Data register
Rn —Any data or address register
PC —Program counter
SR —Status register
CCR —~Condition codes (low-order byte of status)
sSSP —Supervisor stack pointer
Usp —User stack pointer
5P —Active stack pointer (equivalent ta A7)
X —Extend operand condition code
N —Negative condition code
z —Zero condition code
v —Overflow condition code

—Carry condition code
Immediate data —Immediate data from the instruction
d —Address displacement

Source —Source contents
Destinati —Destination contents
Vector —Location of exception vector
ea —Any valid effective address
SUBFIELDS AND QUALIFIERS
(bit} of {operand) Selects a single bit of the operand
{{operand)} The of the refl dl
{operand}g The operand is binary coded decimal; operations are to be

performed in decimal

({(address register)) The register indirect operator, which indicates that the operand
- [{address register}) register points to the memory location of the instruction op-
l{address register)) + erand

#xxx or #(data) Immediate data operand from the instruction

BINARY OPERATIONS
These operations are written (operand) (op} {operand), where top} is one of the following:

’ The left operand is moved to the right operand

e ——————— 1 ABCD Add - The two operands are exchanged

2 - . : + The operands are added
. + A ;
GPERATN DESC) 10 - The right operand is subtracted from the left operand
ASSAMBLER SYNTRE VOB THES INSTRUCT ABCD Dy.Dx ay The operands are multiplied
Syntax: ABCD - [Ay), - (Ax] ! The first operand is divided by the second operand
Atiributes: Size - (Byte) A The operands are logically ANDed
N rts e v The operands are logically ORed

THRT DESCHPTEN 0F STRUCT e o : b Z)

T DESCRPTN OF ASTRUCION Hotlon: Ay th ol Mt:: 4 Relat!onal test, true _|f the left operand is less than the right operand
decimat srithmetic. The operands, ¥es Relational test, true if the left operand is greater than the right operand
different ways: shifted by The left operand is shifted or rotated by the number of positions specified

1. Data register 1o data register: rotated by by the right operand
in the instruction.
2. Memaory to memory: The op
maode using the address
This operation is a byte operation UNARY OPERA‘I’!ONS
CONDIFION CODE EIVECTS SSEE APPIRDO & CONDNTION 1008 ——— Condition Codes: —-{uperand} The o d is logi lly . !
COMPUTATION) x : RN (operand)sign extended The operand is sign extended; bits equal to the high-order bit
Il elgle] :
Lo g) il | of the operan_d are inserted to extend the operand to the left
X Set the same as the carry bit (operand)tested The operand is compared to zero; the condition codes are set
N Undefined. to the result.
Z Cleared il the result is non-zero
¥V Undefined.
€ Set il a decimal carry was geng
ASTRUCTION FORMAT — SPACHIUS THE BT PATTERN AND FELDS OTHER op T'oNs
L U —SM 3

F THE DPERATIDN WORE AND ANY OT=E8 WORDS WHICH ABE Mormally the Z condition cod) i . ¥ . s

P A e o e Notroulh e 2rcondhion cas TRAP Eg&#valent to: SSP - 2 S55P; formatioffset word # (SSP);

IHERL A AN WOULD LN T AUSTRATED RTINS Sy precision operations. -4 9 SSP; PC# (SSP); SSP-2# ; SR # (SSP); (vector) $ PC

UMECTVI DSMESS SXTENSON 15 T FAST OLLORED BY STOP Enter the stopped state, waiting for i

T DESTAMARION [FHCEVE ADCAESS EXTENSION DD i wai g o rnter’upls

if {condition) then (operations) else (operations):
e The condition is tested. If true, the operations after “then” are
bt o by ot performed. If the condition is false and the optional “else"
= . _ o i clause is present, the “else” clause operations are performed.
MELSMMER AT TALUSE A Registar Ry ield — Specifies the d If the condition is false and the “else” clause is omitted, the
WRM « 0, specifies a data regi instruction performs no operation.
WRM - 1, specifies an address Th icol M d
€ semicolon is used to separate operations and terminate
RM field — Specifies the operand i .
0 — the op::anon is data regist the ifithen/else operation.
1 — the operatien is memory 1o

FIGURE B.1 Instruction Description Format

ABCD ABCD

Add Decimal with Extend

Operation: Source1p + Destinationqp + X ¢ Destination

Assembler ABCD Dy.Dx

Syntax: ABCD —(Ay), - (Ax)

Attributes: Size = (Byte)

Description: Adds the source operand ta the destination operand along with the extend

bit, and stores the result in the destination location. The addition is performed using
binary coded decimal arithmetic. The operands, which are packed BCD numbers, can
be addressed in two different ways:

1, Data register to data register: The operands are contained in the data registers

specified in the instruction,
2. Memory to memory: The operands are addressed with the predecrement ad-
dressing mode using the address registers specified in the instruction.

This operation is a byte operation only.

Condition Codes:

X K z LN

| L R GO B

X Set the same as the carry bit.

N Undefined

Z Cleared if the result is non-zero. Unchanged otherwise.
g Undefined

Set if a decimal carry was generated. Cleared otherwise.

NOTE

Normally the Z condition code bit is set via programming before the start of
an operation. This allows successful tests for zero results upon completi

ADD Add

ADD

Operation: Source + Destination § Destination

Assembler ADD (ea).Dn

Syntax: ADD Dn,(ea)

Attributes: Size = (Byte, Word, Long)

Description: Adds the source operand to the destination operand using binary addition,

and stores the result in the destination location. The size of the operation may be
specified as byte, word, or long. The mode of the instruction indicates which operand
is the source and which is the destination as well as the operand size.
Condition Codes:
% N z vt
T=TT=T+]

X Set the same as the carry bit.

N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Setif an overflow is generated. Cleared otherwise,
C Setif a carry is generated. Cleared otherwise.

Instruction Format:

of multiple-precision operations.

Instruction Format:

5) 3 n n 1]] 1 E L1 4 1 ? 1 1)

i — ol M T -
P v [e [o | wewswres | v [e [0 [o | o [aM[csmeam

Instruction Fields:

Register Rx field — Specifies the destination register:
If R'M = 0, specifies a data register
If R/M = 1, specifies an address regi for the predecrement addressing mode

R'M field — Specifies the operand addressing mode:
0 — the operation is data register to data register
1 — the operation is memory to memaory

Register Ry field — Specifies the source register:
If R'M = 0, specifies a data register

If R'M = 1, specifies an address regi for the p

ement addressing mode

ADD Add

Effective Address Field — Determines addressing mode:
a. If the location specified is a source operand, all addressing modes are allowed

ADD

as shown:
Addressing Moda | Mads Register Addressing Mode | Made Registar
R T 7 T
An* oat e number An Dz L m o
[An) 010 | reg. number-An #idata) N 100
e [o [reo mumperan |
iAnh i | 100 reg. numberAn G
__]:-ng Anl | 101 | reg number:An [dy5.PCI 1 010
Idg.AnXnl | nu—i reg. number An dg.PC.Xn) m on

“Word and Long only.

15 " 3 1+ " w 9 L] 1 & 5 L]] 2 1 o
EFFECTIVE ADUSESS
| I | ! ’ l : | FEGISTER 0P ManE MODE | memsten |
I ion Fields:
Register field — Specifies any of the eight data registers.
Op-Mode field —
Byte Word Long Operation
000 om 010 (ea)=(Dn) # in)
100 101 10 (Dn)+(ea) ¢ (ea)
ADDA Add Address AD DA
Operation: Source + Destination # Destination
Assembler
Syntax: ADDA (ea), An
Attributes: Size = (Word, Long)
Description: Adds the source operand to the destination address register, and stores

the result in the address register. The size of the operation may be specified as word
or long. The entire destination address register is used regardless of the operation
size.

Condition Codes:
Not affected

Instruction Format:

b. If the location specified is a destination operand, only memory alterable address- Bo. e B W 8 rBodgobod 2 8 4
ing modes are allowed as shown: N v | e | i BEGISTER 0P -MODE FFFECTIVE ADDRESS
| FE——— : - s Bepletar | N MADE | wemsten
Made | Mode | Register Addressing Mode > _ Register | Op-Mode Fleld:
bn - | —]) W m 000 Long Operation
An - [xxxhL m 001 on MY [eash+ AN # (AR
{An) 010 | reg. number :__5 #(dma) - " Fields:
WA+ IT1._} reg. mumbe I Register field — Specifies any of the eight address registers. This is always the des-
in 100 | reg number:An tination.
IdygAn) 101 | reg number.An | Id15.PCI - 2 Op-Mode field — Specifies the size of the operation:
(dgAn X Tl | reg. urberin (dgPC.Xn) — = 011 — Word operation. The source operand is sign-extended to a long operand and
e e - . the operation is performed on the address register using all 32 bits.
111 — Long operation.
Notes: Effective Address field — Specifies the source operand. All addressing modes are

1. The Dn mode is used when the destination is a data register; the destination (ea)
mode is invalid for a data register.

2. ADDA is used when the destination is an address register. ADDI and ADDQ are
used when the source is immediate data. Most assemblers automatically make
this distinction,

allowed as shown:

| Addressing Mode | Mode Rogister | | Ade Mode | Mode Register

Dn 000 | reg numberDn il m) D00

An o reg. numberAn el L 11 001 B
| A 010 | reg. number:An »edonal | 100 |

[Anj + 011 | reg. number:An | ' :

ian] 100 reg. number An | !

| {dygan} o reg, number; An il Idyg.PCY Mmoo o010
(e An.Xn) 10| reg. number:An L tdaPCxm m ! o

AD Dl Add Immediate AD Dl

0

peration: Immediate Data + Destination # Destination
Assembler
Syntax: ADDI #(data),(ea)

Attributes: Size = (Byte, Word, Long)

Dm_ription: _ﬁ«dgs the irnlmecliate data to the destination operand, and stores the result
in the destination location. The size of the operation may be specified as byte, word
or long. The size of the immediate data matches the operation size.

Condition Codes:
X N 2 v __c__1

X Set the same as the carry bit.

N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V' Set if an overflow is generated. Cleared otherwise.
C Set if a carry is generated. Cleared otherwise.

Instruction Format:

15 L] n 12 n '] 9 B 7 3 5 4 3 2 1 o
= 5 T
n.olu‘u]n|r|1|a|slzs‘ EFFECTIVE ADDRESS
| MODE | mesisrem
WORD DATA (16 BITS) I _ EYTEDATA (B 8ITS| _ 4]
L LONG DATA (32 BITS))

Instruction Fields:
Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation

ADDQ Add Quick ADDQ-

Op i Immediate Data+ Destination # Destination
Assembler
Syntax: ADDQ #(data),(ea}

Attributes: Size = (Byte, Word, Long) —

Description: Adds an immediate value of 1 to 8 to the operand at the destination lo-
cation. The size of the operation may be specified as byte, word, or long. Word and
long operations are also allowed on the address registers. When adding to address
registers, the condition codes are not altered, and the entire destination address reg-
ister is used regardless of the operation size.

Condition Codes:
i N z v c

X Set the same as the carry bit.

N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Set if an overflow occurs. Cleared otherwise.

C Setif a carry occurs. Cleared otherwise.

The condition codes are not affected when the destination is an address register.

Instruction Format:

¥ woo@ o7 o omn w3 & 1 8 s 4 31 1 1 0
| | EFFECTIVE ADDRESS
u ! ‘ ! I 29, el I i [s ‘ MODE | ReGisTER J
Instruction Fields:) _) .
Data field — Three bits of immediate data, 0-7 (with the immediate value 0 representing
a value of 8).

Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation

ADDI

Add Immediate

Effective Address field — Specifies the destination operand

Only data alterable addressing modes are allowed as shown:

Addressing Mode | Mode | Register Addressing Mode | Mode Register
Dn 000 reg. numbear:Dn fexx) W m 000
_An = - (xxxl.L m o
Lo r.;-ﬂ o reg. number-An | #idata) -
l.;n} o1 reg. number:An | |
_;An]____ IE_HI reg. number:An g . e
[dyg.Anh W01 reg. number-An fdyg.PC} -
{dg.An,Xn) I o reg, number.An | tdg,PC.Xn) — -

Immediate field — (Data immediately following the instruction):

If size = 00, the data is the low order byte of the immediate word
If size = 01, the data is the entire immediate word
If size = 10, the data is the next two immediate words

ADDQ

Effective Address field — Sy

Add Quick

.

the desti

I
1o

Only alterable addressing modes are allowed as shown:

»‘ d Maode | Mode llqln_q | Addressing Mode Mode Register

On 000 | reg. number:Dn) W 1m D00
An* 001 reg. number:An Do) L 11 001
[An] 0o feg. number: An #{data} - -

[An} + a1 reg. number:An

1 - {An) 100 rég. number An
IdygAn) | rég. number:An | d1g.PCH -

I

(g An,Xn) 1o reg. number-An log PC.Xnt s -

*Word and Long only.

ADDX ADDX

Add Extended

Operation: Source + Destination + X § Destination

Assembler ADDX Dy,Dx

Syntax: ADDX - (Ay), - (Ax)

Attributes: Size = (Byte, Word, Long)

Description: Adds the source operand to the destination operand along with the extend

bit and stores the result in the destination location. The operands can be addressed
in two different ways:
1. Data register to data register: The data registers specified in the instruction con-
tain the operands.
2. Memory to memory: The address registers specified in the instruction address
the operands using the predecrement addressing mode.
The size of the operation can be specified as byte, word, or long.

Condition Codes:

X N 2 v C
TN DR I O T
Set the same as the carry bit,
Set if the result is negative. Cleared otherwise.
Cleared if the result is non-zero. Unchanged otherwise.

Set if an overflow occurs. Cleared otherwise.
Set if a carry is generated. Cleared otherwise.

NOTE
Normally the Z condition code bit is set via programming before the start of
an operation. This allows successful tests for zero results upon completion
of multiple-precision operations.

OC<NZ X

Instruction Format:

15 " o2 on 10 L] 8 7 3 5 1 3 2 | v
1|

L T T o [T weosteam [v 1 s] o] Tam | neaserny |

AND

And Logical

AND AND

ADDX ADDX

Add Extended

Instruction Fields: o)

Register Rx field — Specifies the destination register.

If R'M = 0, specifies a data register)

If R'M = 1, specifies an address register for the predecrement addressing mode
Size field — Specifies the size of the operation:

00 — Byte operation

01 — Word operation

10 — Long operation

R/M field — Specifies the operand address modg:
0 — The operation is data register to data register
1 — The operation is memory to memory
Register Ry field — Specifies the source register:
If R'M = 0, specifies a data register)
If R/M = 1, specifies an address register for the predecrement addressing mode

And Logical

Effective Address field — Determines addressing mode:

AND

If the location specified is a source operand only data addressing modes are allowed

Operation: SourceADestination # Destination

Assembler AND (ea),Dn

Syntax: AND Dn,(ea}

Attributes: Size = (Byte, Word, Long)

Description: Performs an AND operation of the source operand with the destination

operand and stores the result in the destination location. The size of t_he operation can
be specified as byte, word, or long. The contents of an address register may not be
used as an operand.

Condition Codes:
X N 1 v [

T TeTe]

X Not affected A
N Set if the most-significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared
C Always cleared
Instruction Format:
W w2 w w9 8§ 1 & 5 4 3 2 1 @
EFFECTIVE ADDRESS
| I ‘ 1 ‘ 0 l] REGISTER OP-MODE ol R

Instruction Fields:
Register field — Specifies any of the eight data registers
Op-Mode field —

Byte Word Long
000 001 010
100 10 110

Operation
{{ea})A({Dn)) # Dn
({(Dn))A{(ea}) » ea

as shown:
'l_ Mode | Mode Register | | Addressing Mode | Mode Register |
On 000 reg. number:Dn I !__[::x].w m oo
| An - —__;I | .I':(xx].L m 001
. [An} o10 neg. numbserAn ‘ r_ #(data) m 100
(An}+ 011 | reg. number:An
- fAn) 100 reg. number:An]
rm;n_nr | 10 reg. number:An i idy5.PC) m a10 B
ldg.An.Xn] 110 req umher.ﬂ t _(GQ.FC.XHI m on

If the location specified is a destination operand only memory alterable addressing
modes are allowed as shown:

Addressing Mode | Mode | Register | }_ﬂd{lmﬂlnﬂ Mode | Mode Register
Dn -) (axx] W 11 000
An — —] [xxx] L 1m i oo
o [An] 010 feg. number:An #idata) - - i
iAn}+ on req. numb«:l\n_ T
| -iAn] 100 reg. numbl_(:ﬂl!_ |
| (dgAn) 101 | reg. number-An | (dy5.PC) -] - _A_
(dg.An.Xn] 110 reg. numberAn | _\dg.PC,Xn) == =
Notes:

1. The Dn mode is used when the destination is a data register; the destination
{ea) mode is invalid for a data register.
2. Most assemblers use AND! when the source is immediate data.

ANDI ANDI

AND Immediate

Operation: Immediate DataADestination # Destination

Assembler

Syntax: ANDI #(data),(ea)

Attributes: Size = (Byte, Word, Long)

Description: Performs an AND operation of the immediate data with the destination

operand and stores the result in the destination location. The size of the operation can
be specified as byte, word, or long. The size of the immediate data matches the
operation size.

Condition Codes:

Not affected

Set if the most-significant bit of the result is set. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Always cleared

Always cleared

O<NZ X

Instruction Format:

5 (L) 13 17 i n 9 B 7 1] 5 1) k] 2 1 (1]
o] 0 |‘ 0 8 0 | 0 i | o | SiE EFFECTIVE ADDRESS
S : | MODE | mesisTeR
WUORD DATA (16 BITS) 1 BYTE DATA (8 BITS) _1
L _ LONG DATA (32 BITS) e e Y |

Instruction Fields:
Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation

ANDI

ANDI ANDI

ANDI ANDI

AND Immediate

Effective Address field — Specifies the destination operand
Only data alterable addressing modes are allowed as shown:

A Mode| Mode | Register | _ ressing Mode | Mode Register
Dn 000 | reg. number-Dn 1 i o) W 1M 000
An - —_ | T} L m a1
{An) 0o reg. umbesAn 1 __ #udatay - —
IAn] + 011 reg. number:An]
- {&n] 100 reg. number An . =
{dygAn) 101 reg. number: An T ld-|I5,PCI — =]
Idg.An,Xn} 10| reg. number:An L __|g§',_P_<_:,xn: -1 = _—

Immediate field — (Data immediately following the instruction):
If size = 00, the data is the low order byte of the immediate word
If size = 01, the data is the entire immediate word
If size = 10, the data is the next two immediate words

ANDI
to SR

to SR AND | di to the S R

to CCR AND Immediate to Condition Codes to CCR Privilaved nsmacion]
. Operation: If supervisor state
Operation: SourceACCR # CCR then SourceASR # SR
else TRAP

Assembler
Syntax: AND! #(data},CCR Assembler

Syntax: ANDI #(data),SR
Attributes: Size = (Byte) N)

qom 3 1 g ;i i Attributes: Size = (Word)

Description: Performs an AND operation of the immediate operand with the condition Description: Performs an AND operation of the immediate operand with the contents

codes and stores the result in the low-order byte of the status register.

Condition Codes:

r
.

Cleared if bit 4 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 3 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 2 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 1 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 0 of immediate operand is zero. Unchanged otherwise.

ODC<NZX

Instruction Format:

of the status register and stores the result in the status register. All implemented bits
of the status register are affected.

Condition Codes:

CrTTTS

Cleared if bit 4 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 3 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 2 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 1 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 0 of immediate operand is zero. Unchanged otherwise.

O<NZ X

Instruction Format:

| 15 9 B 7 6 5 4 x|] 1 o

0w u o mw o w o w s & 1 & 5 4 3 2 1 0
[oToJoJoe]eJo]i+JToJoflolsJrvJaJrJoelo
Lol ofofofofofoleoe] BYTE DATA (8 BITS)

-

O S P TR 1)
ol oToTo o v ool vT 11

'WORD DATA (16 BITS]

Fn

ASL,ASR ASL,ASR

Arithmetic Shift

Operation: Destination Shifted by (count) # Destination
Assembler ASd Dx,Dy
Syntax: ASd #(data),Dy
ASd (ea)
where d is direction, L or R
Attributes: Size = (Byte, Word, Long)
Description: Arithmetically shifts the bits of the operand in the direction (L or R} spec-

ified. The carry bit receives the last bit shifted out of the operand. The shift count for
the shifting of a register may be specified in two different ways:
1. Immediate — The shift count is specified in the instruction (shift range, 1-8).
2. Register — The shift count is the value in the data register specified in instruction
modulo 64.

The size of the operation can be specified as byte, word, or long. An operand in memaory
can be shifted one bit only, and the operand size is restricted to a word.

For ASL, the operand is shifted left; the number of positions shifted is the shift count.
Bits shifted out of the high-order bit go to both the carry and the extend bits; zeros
are shifted into the low-order bit. The overflow bit indicates if any sign changes occur
during the shift.

[J—1—1
Lz o

For ASR, the operand is shifted right; the number of positions shifted is the shift count.
Bits shifted out of the low-order bit go to both the carry and the extend bits; the sign-
bit (MSB) is shifted into the high-order bit.

¢ |

ASL

B e
T
ASLASR womacsw ASLASR

Instruction Fields (Memory Shifts):
dr field — Specifies the direction of the shift:
0 — Shift right
1 — Shift left

Effective Address field — Specifies the operand to be shifted
Only memory alterable addressing modes are allowed as shown:

Mode | Mode Register Addressing Mode | Mode Register
Dn —_— i). W m 000
An - —_— (xxx].L m 001
{An) 010 rag. number:An W#{data} -
(An}+ on r0g. number:An
- {An} 100 reg. number:An
fdyg.Anl 101 rag. number:An [d1g.PC) — -
ldg.An.Xn) 10 reg. numbar:An | {dg.PC.Xnl s -

ASL,ASR
Condition Codes:

[o o

X Set according to the last bit shifted out of the operand. Unaffected for a shift count
of zero.

N Set if the most-significant bit of the result is set. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Set if the most significant bit is changed at any time during the shift operation.
Cleared otherwise.

C Set according to the last bit shifted out of the operand. Cleared for a shift count
of zero.

ASL,ASR

Arithmetic Shift

Instruction Format (Register Shifts):

15 113] 2 L1 10 9 L] 1 & 5 4 i 2 1 o
[T T T o | conmesren | o | s [w]o o REGISTER |

Instruction Fields (Register Shifts):
Count/Register field — Specifies shift count or register that contains the shift count:
Ififr = 0, this field contains the shift count. The values 1-7 represent counts of 1-7;
value of zero represents a count of 8.
If iir = 1, this field specifies the data register that contains the shift count {modulo

64).
dr field — Specifies the direction of the shift:
0 — Shift right
1 — Shift left

Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation
ilr field:
Ifilr = 0, specifies immediate shift count
Ififr = 1, specifies register shift count
Register field — Specifies a data register to be shifted

Instruction Format (Memory Shifts):
5 MW 2 m oW % 8 1 & 5 & 3 2 1 @
i § ‘ : ‘ i [nTn] i ! ; | FFFECTIVE ADDRESS]

mooe | mcsten |

Bcc Bcc

Branch Conditionally

Operation: If {condition true) then PC+d # PC

Assembler

Syntax: Bee (label)

Attributes: Size = (Byte, Word)

Description: if the specified condition is true, program execution continues at location

(PC) + displacement. The PC contains the address of the instruction word of the Bec
instruction plus two. The displacement is a twos complement integer that represents
the relative distance in bytes from the current PC to the destination PC. If the 8-bit
displacement field in the instruction word is zero, a 16-bit displacement (the word
immediately following the instruction) is used. Condition code cc specifies one of the
following conditions:

CC carry clear 0100 C LS low or same 0011 C+2 _
CS carry set 0 c LT less than 1101 NV« NeW
EQ equal o0 z . M minus 01N
GE greater or equal 1100 NV +NeV NE not equal 0110 2
GT greater than 1110 NeWsZ + NeV=Z PL plus 1010 N
HI high 0010 C2 _ VC overflow clear 1000 V
LE less or equal 1111 Z4 NV + NoV VS overflow set 1001 v
Condition Codes:
Not affected
Instruction Format:
[T TR < N+ SN [N B | {] 7] 5 [] ? 1 0
[T T v T o[conomon | semoispacement
i 16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT - 300
Instruction Fields:

Condition field — The binary code for one of the conditions listed in the table.

B-Bit Displacement field — Twos complement integer specifying the number of bytes
between the branch instruction and the next instruction to be executed if the con-
dition is met.

16-Bit Displacement field — Used for the displacement when the 8-bit displacement
field contains $00.

NOTE

A branch to the immediately following instruction automatically uses the 16-
bit displacement format because the 8-bit displ rent field ins $00
(zero offset).

BCHG BCHG

Test a Bit and Change

Operation: ~{{number) of Destination} # Z;
~{{number) of Destination} ¢ {(bit number)} of Destination
Assembler BCHG Dn,(ea)
Syntax: BCHG #{(data},(ea)
Attributes: Size = (Byte, Long)

: Tests a bit in the destination operand and sets the Z condition code ap-
proprlateiv. then inverts the specified bit in the destination. When the destination is
a data register, any of the 32 bits can be specified by the modulo 32-bit number. When
the destination is a memory location, the operation is a byte operation, and the bit
number is modulo 8. In all cases, bit zero refers to the least-significant bit. The bit
number for this operation may be specified in either of two ways:

1. Immediate — The bit number is specified in a second word of the instruction.
2. Register — The specified data register contains the bit number.

Condition Codes:

Not affected
Not affected
Set if the bit tested is zero. Cleared otherwise.
Not affected
Not affected

O<HNZ X

Instruction Format (Bit Number Dynamic, specified in a register):
(TN TR - T I (T R 1] 1 6 5 . 3 H 1]

[N NI N N N P

MODE | mecisTer
Instruction Fields (Bit Number Dynamic):
Register field — Specifies the data regi that tains the bit b
Effective Address field — Specifies the destination location. Only data alterable ad-
dressing modes are allowed as shown:

Dn* 000 reg. mme 5 o) W 11 000
An - —) .L m 001
[An) 0o reg. number:An #idata) - =
(AR} + o reg. number:An
= {An} 100 reg. number:An
{dygAn} 101 reg. number:An “_'_IEI_Q,PC) — -
(dg.An.Xn) 110 reg. number:An Idg.PC.Xn) = o

*Long only; all others are byte only.

BCLR BCLR

Test a Bit and Clear

Operation: ~((bit number} of Destination} # Z;
0 # (bit number) of Destination
Assembler BCLR Dn,{ea)
Syntax: BCLR #(data).(ea)
Attributes: Size = (Byte, Long)
Description: Tests a bit in the destination operand and sets the Z condition code ap-

propriately, then clears the specified bit in the destination. When a data register is the
destination, any of the 32 bits can be specified by a modulo 32-bit number. When a
memory location is the destination, the operation is a byte operation, and the bit
number is modulo 8. In all cases, bit zero refers to the least-significant bit. The bit
number for this operation can be specified in either of two ways:
1. Immediate — The bit number is specified in a second word of the instruction.
2. Register — The specified data register contains the bit number.

Condition Codes:

X N H v 1 g:i
X Not affected
N Not affected
Z Set if the bit tested is zero. Cleared otherwise.
V Not affected
C Not affected

Instruction Format (Bit Number Dynamic, specified in a register):

s 4 31 2 1 3
1 EFFECTIVE ADDRESS

MIDE | nzmsmiJ

15 4 LK} 12 n n 3 8 T

[
folols [2] == [-0vLr

Instruction Fields (Bit Number Dynamic):) ;
Register field — Specifies the data register that contains the bit number

BCHG

Test a Bit and Change

BCHG

Instruction Format (Bit Number Static, specified as immediate data):

s W @ 2 n W s 8 ¢ & 5 & 3 12 1
[| EFFECTIVE ADDRESS

o | o oo ‘1 e | o | e |0 | ' i | mesten

o |0 oo o o oTloe BIT NUMBER B

Instruction Fields (Bit Number Static):
Effective Address field — Specifies the destination location
Only data alterable addressing modes are allowed as shown:

Mode | Mode Register ch Mode | Mode Register
Dn* 000 reg. number: Dn fxxx). W m 000
An -_ - lxmxl L 11 oot
(An} 010 reg. number:An #idata) -
{An) + 011 reg. number:An
= [An) 100 reg. number:An |
Idyg.An) 101 reg. number:-An d15.PC) — - |
..... |
(dg.An,Xn) 110 | reg. number:An Idg,PC.Xn) - |
*Long only; all others are byte only.
Bit Number field — Specifies the bit number
BCLR Test a Bit and Clear Bc LR
Effective Address field — Specifies the destination location
Only data alterable addressing modes are allowed as shown:
Mode | Mode Register L :Addressing Mode ade L
Bn* 000 reg. number:Dn e W m | 000
An - — [xexse) L m | an
1An) 010 | reg number An #idata) =0 | ot
oo T 1 R
[An} + on rég. number;An 1
L i | R
(An} 100 reg. number:An \
__ldhgAn) 0 req, numberAn {d1g.PC! =1 —
(dg.An,Xn) 10 | reg, number.An (dg.PC,Xn) -1 —
'Lnng only, all othars are byte only.
Instruction Format (Bit Number Static, specified as immediate data):
[U - S A T R | 8 & 5 ‘ 3 2 1 [}
| | | EFFECTIVE ADDRESS
0| ¢ 1 1
it AN | mooe | mecisren |
Lo flojole e o e o BIT NUMBER
Instruction Fields (Bit Number Static):
Effective Address field — Specifies the destination location
Only data alterable addressing modes are allowed as shown:
Adds Mode -Ml Register A g Mode h_lgd: _ .qululet
Dn* 000 reg, number.Dn L] W m 000
___An - — Dxnl L 1 o0
i&n) oo reg. aumber:An | #idatar — -
(An) + 011 | rog. number:An
(An) 100 reg numbellﬂ_n_
idyg.An) 101 | reqg. number:An Id15.PC! — —
Idg.AnXn) 110 | reg. number:An Idg.PC.Xn} - —

*Long only. all others are bﬂe anly.

Bit Number field — Specifies the bit number

BKPT BKPT

Breakpoint

Operation: Execute breakpoint acknowledge bus cycle;
Trap as illegal instruction
Assembler
Syntax: BKPT #(data)
Attributes: Unsized
Description: This instruction is used to support the program breakpoint function for

debug monitors and real-time hardware emulators, and the operation will be de-
pendent on the implementation. Execution of this instruction will cause the MC68010
to run a breakpoint acknowledge bus cycle (all function codes driven high) and zeros
on all address lines.

Whether the breakpoint acknowledge bus cycle is terminated with DTACK, BERR, or
VPA, the processor always takes an illegal instruction exception. Durmg excepnun
processing, a debug monitor can distinguish eight different software breakp by

BRA BRA

Branch Always

Operation: PC+d#PC

Assembler

Syntax: BRA (label)

Attributes: Size = (Byte, Word)

Description: Program execution continues at location {PC) + displacement. The PC con-

tains the address of the instruction word of the BRA instruction plus two. The dis-
placement is a twos complement integer that represents the relative distance in bytes
from the current PC to the destination PC. If the 8-bit displacement field in the instruc-
tion word is zero, a 16-bit displacement (the word immediately following the instruc-
tion) is used.

Condition Codes:
Not affected

decoding the field in the BKPT instruction.
For the MCE8000, MCE8HCO000, and MCE8008, this instruction causes an illegal instruc-
tion exception but does not run the breakpoint acknowledge bus cycle.

Condition Codes:
Not affected
Instruction Format:

15 " k] 12 n nm 5 8) 1] 5 1] 2 1]
ol vTeTo T vJToe oo el 1t ool 1] VECTOR]

Instruction Fields:
Vector field — Contains the immediate data, a value in the range of 0-7. This is the
breakpoint number.

BSET BSET

Test a Bit and Set

15 " (k] (1] " 0 q L] 7 1 5 L 3 2 1]

[it o JoeJaojoTloe 8817 DISPLACEMENT |
16-BIT ISPLACEMENT If 8.B1T DISPLACEMENT - 300
Instruction Fields:

8-Bit Displacement field — Twos complement integer specifying the number of bytes
between the branch instruction and the next instruction to be executed.

16-Bit Displacement field — Used for a larger displacement when the 8-bit displace-
ment is equal to $00.

NOTE

A branch to the immediately following instruction automatically uses the 16-
bit displacement format because the 8-bit displacement field contains $00
(zero offset).

BSET

Instruction Fields (Bit Number Dynamic):
Register field — Specifies the data register that contains the bit number
El'fecﬁv_e Address field — Specifies the destination location. Only data alterable ad-

"

BSET

Test a Bit and Set

Operation: ~({{bit number) of Destination) Z;
1 # (bit number) of Destination
Assembler BSET Dn,(ea)
Syntax: BSET #(data),{ea)
Attributes: Size = (Byte, Long)
Description: Tests a bit in the destination operand and sets the Z condition code ap-

propriately. Then sets the specified bit in the destination operand. When a data register
is the destination, any of the 32 bits can be specified by a modulo 32-bit number.
When a memory location is the destination, the operation is a byte operation, and the
bit number is modulo 8. In all cases, bit zero refers to the least-significant bit. The bit
number for this operation can be specified in either of two ways:
1. Immediate — The bit number is specified in the second word of the instruction.
2. Register — The specified data register contains the bit number.

Condition Codes:

X N 7 W C

[=T-1-1-1]

Not affected
Not affected
Set if the bit tested is zero. Cleared otherwise.
Not affected
Not affected

O<NZX

Instruction Format (Bit Number Dynamic, specified in a register):

2 0w w s & 1 & 5 4 3 2 1 0
I EFFECTIVE ADDRESS

5w on
: 2 | :
|
Ld 0 [0 l U | PESSTER O ! MODE __REGISTER___|

g modes are all d as shown:
T
B Mode | Mode | Register Addressing Mode | Mode Register
Dn* 000 | reg numberOn kW [m _ooo
An - — Jah L | m 001
| x
{An} o1 reQ. number An I = #(datal -
{An] | reg. number:An |
- {An]) 100 rég. number-An
(d1gAn) 101 | reg number.An id15.PC) | = -
{dg.An.Xn} - 110 reg. number:An l __IdgPC.Xn) [- —
“Long only: all others are byte only.
Instruction Format (Bit Number Static, specified as immediate data):
L U - TS F SN [N T 1 8 7 § 5 1 3 2 1 o
r = i
EFFECTIV |
| 0| e |0 1 0 []] l 1 | 1 ‘ ETVE ADORESS
| 8 _ MoDE | meisten
Leleflofl ol o o]l BIT NUMBER

Instruction Fields (Bit Number Static):
Effective Address field — Specifies the destination location. Only data alterable ad-
dressmg modes are ailowad as shown:

__ Register

Mode

“Long only; ali othars are byte only.

Bit Number field — Specifies the bit number

Mdrnllnq Mode Mode 2 Mode

I Dn* 000 reg. number-Dn bW m mo
An — — __‘h:x:ll m 001-—
{An} o reg. number An -;iﬂma} —
[An) + on reg. number Avn-_
- [An) 100 reg. number:An | . B

| idigAn 101 rag._n'u_mber.An g PC) - .

o (dg.An.Xn] 110 reg. number:An _lq&.P_C_,_!n! — =

BSR Branch to Subroutine

BSR

Operation: SP-4 8 SP; PC#(SP); PC+d# PC

Assembler

Syntax: BSR (label)

Attributes: Size = (Byte, Word)

Description: Pushes the long word address of the instruction immediately following the

BSR instruction onto the system stack. The PC contains the address of the instruction
word plus two. Program execution then continues at location (PC) + displacement.
The displacement is a twos complement integer that rep the relative distance
in bytes from the current PC to the destination PC. If the 8-bit displacement field in
the instruction word is zero, a 16-bit displacement (the word immediately following
the instruction} is used.

Condition Codes:
Not affected

Instruction Format:

s W13 oMo oW w8 B T & 5 & 3 2 1 @
o [1 [o [o T ol o], 81T DISPLACEMENT]
16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = 500 |

Instruction Fields:
8-Bit Displacement field — Twos complement integer specifying the number of bytes
between the branch instruction and the next instruction to be executed
16-Bit Displacement field — Used for a larger displacement when the 8-bit displace-
ment is equal to $00

NOTE

A branch to the immediately following instruction automatically uses the 16-
bit displacement format because the 8-bit displacement field contains $00
(zero offset).

BTST BTST

Test a Bit

BTST BTST

Test a Bit

Operation: - ({bit number)} of Destination) § Z;

Assembler BTST Dn,{ea}

Syntax: BTST #(data),(ea)

Attributes: Size = (Byte, Long)

Description: Tests a bit in the destination operand and sets the Z condition code ap-

propriately. When a data register is the destination, any of the 32 bits can be specified
by a modulo 32 bit number. When a memory location is the destination, the operation
is a byte operation, and the bit number is modulo 8. In all cases, bit zero refers to the
least significant bit. The bit number for this operation can be specified in either of two
ways:
1. Immediate — The bit number is specified in a second word of the instruction,
2. Register — The specified data register contains the bit number.

Condition Codes:

Not affected
Not affected
Set if the bit tested is zero. Cleared otherwise.
Not affected
Not affected

ODO<NZX

Instruction Format (Bit Number Dynamic, specified in a register):
5 M 13 @2 wn w8 8 1 & 5 4 3 12 1 @

51 3 8 I I i

MODE | REGISTER

CHK CHK

Check Register Against Bounds

; . s . Operation: IfDn < 0 or Dn > S.
Instruction Fields (Bit Number Dynamic):)) n or Dn > Source then TRAP
Register field — Specifies the data register that contains the bit number Assembler
Effective Address field — Specifies the destination location. Only data addressing Syntax: CHK (ea),.Dn
modes are allowed as shown:
[Addewssing Mode | Mode | Regisr Attributes: Size = (Word)
Dn* | 000 | reg. number.Dn food W L1 %00 Deseri 1 -Compares the value in the data register specified in the instruction to zero
An = = fo) L m [. and to the upper bound (effective address operand). The upper bound is a twos
A 010 | reg. number-An sidute) 11 100 complement integer. If the register value is less than zero or greater than the upper
bound, a CHK instruction exception, vector number 6, occurs.
{An) + o1 reg. number:An -
- [An] 100 | reg. number:An e Condition Codes:
[dyg.An) m reg. number:An [d1g.PCH 1 010 ¥ N 2 v c
[dg.An,Xa} 110 | reg. number:An Idg.PC.Xn] m on I = | . v | u i‘ g i |
*Long only; all othars are byte only.
: . . " X Not affected
Instruction Format (Bit Number Static, specified as immediate data): N Set if Dn < 0; cleared if Dn > effective address operand. Undefined otherwise.
5w 1 mo oM W 9 8 1 55 4 3 2 1 5 'd::::‘:::g
I EFFECTIVE ADDRESS C Undefined
oo o]0 | o |0]s] |] ‘ oo I -
o o fo]o [ole o 5] BIT NUMBER Inst F
. i)) 15 " 13 1 1 w 9 B 7 B 5 4] 2 1 [}
Instruction Fields (Bit Number Static):) - T . LR S
Effective Address field — Specifies the destination location. Only data addressing rg I v e l 0 REGISTER { [o ‘ Mon:FFEcann:mﬁEss |
modes are allowed as shown: ! L -t BLEISTER

Addressing Mode | Mode | [Mode | Mode Register
Dn 000 rag. number:On _tx"_l.w m 000
An - - -_— fax).L 11 001 -
[an) . 010 I reg. number:An #(data) - —
- -tﬂ-m . 011 rag. number:An
- [An] B l&? reg. number:An - |
I_ﬂ]e.Anrl 101 reg. number:An (dyg.PC) m 010
) [dg.AnXn} 10 reg. ﬂumbul:_An [dg.PC.Xn} m o1

Bit Number field — Specifies the bit number

Instruction Fields:
Register field — Specifies the data register that comains the value to be checked

Effective Address field — Specifies the upper bound operand. Only data addressing
modes are allowed as shown:

[Addressing Mode | Mode | Pegister | Addressing Mode | Mode Register |
Dn___ 000 | reg. numh_u!_.DL Ixxm) W m 000
An —_ | -_ fexx) L m o0
{An] i 010 reg. number:An #idata) " 100 1
Al 011 | reg. number:An
- [An) 100 reg. number:An |
__ldygAn) 101 reg. numbar:An | T (d1g.PC} m "o
(dg.An Xn} 10 | reg | idgPCxm ._| m o |

10

CLR CLR

Clear an Operand

Operation: 0 # Destination

Assembler

Syntax: CLR {ea)

Attributes: Size = (Byte, Word, Long)

Description: Clears the destination operand to zero. The size of the operation may be

specified as byte, word, or long.

Condition Codes:

CvpP CvmpP

Compare

Operation: Destination — Source $ cc

Assembler

Syntax: CMP (ea), Dn

Attributes: Size = (Byte, Word, Long)

Description: Subtracts the source operand from the destination data register and sets

the condition codes according to the result; the data register is not changed. The size
of the operation can be byte, word, or long.

v N2 ¥ _ ¢ Condition Codes:
Tel ToTo X N2 v ¢
X Not affected C=1-1T-T-1T+1]
N Always cleared
Z Always set X Not affected
V Always cleared N Set if the result is negative. Cleared otherwise.
C Always cleared Z Set if the result is zero. Cleared otherwise.
V Set if an overflow occurs. Cleared otherwise.
Instruction Format: C Set if a borrow occurs. Cleared otherwise.
U TR I o B B Erm:mk .e.nzl:miss — strviciion Fomed:
m L 1‘;{ : _4 s MODE REGISTER [5 0w 1317 owm w88) 5 5 4 - T | 1]
T | [. - p— EFFECTIVE ADORESS
Instruction Fields: o B | N MODE | measten
Size field — Specifies the size of the operation
00 — Byte operation Instruction Fields:
01 — Word operation Regi field — Specifies the destination data register
Eﬂm — Long operefm?; s Op-Mode field —
ective Address field — Specifies the destination location. Only data alterable ad- Operati
dressing modes are allowed as shown: Byts. ‘Worl Lang stion
o k : 000 001 010 {(Dn)) - ({ea))
| Addressing Mode | Mode Register | | Mods | Mode Ragister
Dn 0oo reg. number:Dn o) W m 000
An - — o) L o 001
[An) 010 | reg number:An #idawm) - -
tAnl -~ 611 | reg. number:An .
1An) 100 [reg. number-An
ldygAn) 101 | reg numbel:e_n_ ___[_:!3!5_,?0 = =
| {dg.AnXn} 10 reg. number: An L ldgPCXn) - —
NOTE
In the MCE8000, MC68HC000, and MC68008 a memory destination is read
before it is cleared.
CMP Eo— CMP CMPA SR CMPA
Effective Address field — Specifies the source operand. All addressing modes are Operati Destinat - Source
allowed as shown: " .
A Mode| Mode Register A Mode | Mods Segbter Sy CMPA (ea), An
Bn 000 reg number:Dn_|) W m 000 ‘
e "o | rep. riibarian — 1 001 Attributes: Size = (Word, Long)
- = - m 1m . +
thn) 010] reg. number.An il Description: Subtracts the source operand from the destination address and
{An) - 011 | rag. number:An LI sets the condition codes according to the result; the add i is not changed
- {An] 100 | reg.number:An | The size of the operation can be specified as word or long. Word length source op-
g An] .' 101 _| reg number.An 1d15.PC) m 010 erands are sign extended to 32-bits for comparison.
(dgAnXnl | 110 | reg numberAn Iprukn, 1 n Condition Codes:
*Ward and Long only.
X N z v [
E=Te T[]
NOTE

CMPA is used when the destination is an address register. CMPI is used when
the source is immediate data. CMPM is used for memory to memory com-
pares. Most assemblers automatically make the distinction.

Not affected

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if an overflow is generated. Cleared otherwise.
Set if a borrow is generated. Cleared otherwise.

O<MNZ X

Instruction Format:
[U - S | T] 7 8 5 . 1 H 1 0

)) EFFECTIVE ADDRESS]
T X
‘ 1 I 0 ‘ ' ‘ 1 ‘ REGISTER 0P-MODE o | neasren |

Op-Mode Figld:
Word Long Operation
Instruction Fields:
Register field — Specifies the destination address register
Op-Mode field — Specifies the size of the operation:
011 — Word operation. The source operand is sign-extended to a long operand and
the operation is performed on the address register using all 32 bits.
111 — Long operation

11

CMPA CMPA

Compare Address

CMPI CMPI

Compare Immediate

Effective Address field — Specifies the source operand. All addressing modes are ~ OPeration: Destination — Immediate Data
allowed as shown:
Addressing Mode | Mode Register Mode | Mode Register Syntax: CMPI #(data) (ea)
Dn 000 reg. number:Dn o) W m 000 " 9
an 001_| reg. number:an oo = 01 Attributes: Size = (Byte, Word, Long)
|An) 0 ul T) Capry . . . :
= r" = 700 pumbes;An fidua) il 100 Description: Subtracts the immediate data from the destination operand and sets the
_Wnly | 0N] reg. number:An | 1 condition codes according to the result; the destination location is not changed. The
“iAnl | 100 | reg number:An) size of the operation may be specified as byte, word, or long. The size of the immediate
[y An) 100 | reg, pumber:An (d16,PC) It o0 data matches the operation size.
Idg. A Xn) 10 | reg. number:An (dg.PC.Xn) m 011 Condition Codes:
A N] v c
T T [
X Not affected
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V' Set if an overflow occurs. Cleared otherwise.
C Set if a borrow occurs. Cleared otherwise.
Instruction Format:
S T T T S T8 8 4 31 1]
T
| EFFECTIVE ADDRESS
oo | o]0 1 1 o |0
L l I ‘ | [I ‘ si“ MDOE | REGISTER
WORD DATA {16 BITS) _ BYTE DATA (8 B1T5)
- LONG DATA (32 BITSI
Instruction Fields:
Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation
CMPI Compare Immediate CM PI CMPM Compare Memory CMPM
Effective Address field — Specifies the destination operand. Only data add ing Operation: Destination — Source # cc
modes are allowed as shown:
e = Assembler
[a Mode| Wade | Megimr mode [Mode | Magimer Syntax: CMPM (Ay) + (Ax) +
| Dn 000 reg. number:Dn {xxx] W m | 000
| An i — ()L 1m 001 Attrib Size = (Byte, Word, Long)
{An) 010 _ number:An #idata) - -
= L '“'""b! - Description: Subtracts the source operand from the destination operand and sets the
L. B AL, U condition codes according to the results; the destination location is not changed. The
(An} 100 | reg. number:An operands are always addressed with the postincrement addressing mode, using the
(dyg.An] 101 | reg number:An tdy15.PCI m 0o address registers specified in the instruction. The size of the operation may be specified
{dg An,Xn) 110 1 reg. number An |dg.PC.Xn) m o1 as byte, word, or long.

Immediate field — (Data immediately following the instruction):
If size = 00, the data is the low order byte of the immediate word
If size = 01, the data is the entire immediate word
If size = 10, the data is the next two immediate words

Condition Codes:

Not affected

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if an overflow is generated. Cleared otherwise.
Set if a borrow is generated. Cleared otherwise.

O<MNZ X

Instruction Format:

o ow w3 8 1 &
1 [meesteras | v [sz |

3 H 1]
REGISTER &y |

(R
el
Instruction Fields:
Register Ax field — (always the destination) Specifies an address register in the pos-
tincrement addressing mode
Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation
Register Ay field — (always the source} Specifies an address register in the postin-
crement addressing mode

12

DBcc DBcc

Test Condition, Decrement, and Branch

Operation: If condition false then {Dn —1 ¢ Dn;
IfDn # ~1then PC+d # PC)
Assembler
Syntax: DBec Dn,(label)
Attributes: Size = (Word)
Description: Controls a loop of instructions. The parameters are: a condition code, a

data register (counter), and a displacement value. The instruction first tests the con-
dition (for termination); if it is true, no operation is performed. If the termination
condition is not true, the low-order 16 bits of the counter data register are decremented
by one. If the result is — 1, execution continues with the next instruction. If the result
is not equal to - 1, execution continues at the location indicated by the current value
of the PC plus the sign ded 16-bit dispi . The value in the PC is the address
of the instruction word of the DBcc instruction plus two. The displacement is a twos

complement integer that represents the relative distance in bytes from the current PC
to the destination PC.

Condition code cc specifies one of the following conditions:

CC carry clear 0100 C LS low or same 0011 C+2Z _
CS carry set 0101 C LT less than 1101 NV + NV
EQ equal 0m z MI minus 011 N
F never equal 0001 0 o NE not equal 0110 2
GE greater or equal 1100 NeV + NV o PL plus 1010 N
GT greater than 1110 NeVeZ + NeVeZ T always true 0000 1
HI high 0010 CZ2 _ VC overflow clear 1000 V
LE less or equal 1111 Z+ NV + NV VS overflow set 1001 V
Condition Codes:
Not affected
Instruction Format:
(O I T S T] 1 § 5 1l 3 H ']
Lol v T 0] [1] #

DISPLACEMENT (16 BITS

Signed Divide Dlvs

DIVS

Operation: Destination/Source # Destination

Assembler DIVS.W {ea),.Dn 32/16 ¢ 16r:16q

Syntax:

Attributes: Size = (Word)

Description: Divides the signed destination operand by the signed source operand and

stores the signed result in the destination. The instruction_ di_fildss a long word byha
word. The result is a quotient in the lower word {Iqast-slgmhcam 16 bIIS! aarldf :.h e
remainder is in the upper word 1most-signi_fiqam 16 bits) of the result. The sign of the
remainder is the same as the sign of the dividend.
Two special conditions may arise during the operation:
. Division by zero causes a trap . . .
; g::i\l‘ro:v rrmay be detected and set before the instruction completes. If the in-
I struction detects an overflow, it sets the overflow condition code, and the op-
erands are unaffected.

Condition Codes:

t affected))) .
g; if the quotient is negative. Cleared otherwise. Undefined if overflow or divide

by zero occurs.))
Set if the quotient is zero. Cleared otherwise. Undefined

ZEro OCCurs.) o :
Set if division overflow occurs; undefined if divide by zero occurs. Cleared oth

erwise.
C Always cleared

if overflow or divide by

< N oZX

Instruction Format {word form):

15 " nl iH L] 1] 8 B T B 5 4 3 2 1]

EFFECTIVE ADDRESS
_IJ_G l ! Ln i i ‘ ! l ! ! MODE | meister

DBcc

Instruction Fields:
Condition field — The binary code for one of the conditions listed in the table
Register field — Specifies the data register used as the counter
Displacement field — Specifies the number of bytes to branch

DBcc

Test Condition, Decrement, and Branch

Notes:

1. The terminating condition is similar to the UNTIL loop clauses of high-level languages.
For example: DBMI can be stated as “decrement and branch until minus”.

2. Most assemblers accept DBRA for DBF for use when only a count terminates the foop
(no condition is tested).

3. A program can enter a loop at the beginning or by branching to the trailing DBcc
instruction. Entering the loop at the beginning is useful for ifidexed addressing modes
and dynamically specified bit operations. In this case, the control index count must
be one less than the desired number of loop executions. However, when entering a
loop by branching directly to the trailing DBcc instruction, the control count should
equal the loop execution count. In this case, if a zero count occurs, the DBce instruction
does not branch, and the main loop is not executed.

DIVS DIVS

Instruction Fields:) o)
Register field — Specifies any of the eight data registers. This field always specifies
the destination operand. :
Effective Address field — Specifies the source operand. Only data addressing modes
are allowed as shown:

Signed Divide

A Mode | Mode | Register Addressing Mode | Mode Register

Dn 000 reg. numberDn () W Y 111 000

An = s fxxxlL o 001

B {An) 0 reg. rmmbor:A:_q #idaral m i 100

B (AR + a1 reg. number: An -

- lAn) 100 rég. number:An |

(dyg.An) 101 reg. number:An (d16,PCI 1 010

ldg.An.Xn} 10 reg. number:An | {dg,PC.Xn) 11 M

NOTE

Overflow occurs if the quotient is larger than a 16-bit signed integer. The instruc-
tion checks for overflow at the start of execution. If the upper werq of the dlvqund
is greater than or equal to the divisor, the overflow bit is set in the condition
codes, and the instruction terminates with the operands unchanged.

13

DIVU DIVU

Unsigned Divide
Operation: Destination/Source # Destination
Assembler
Syntax: DIVU.W (ea),Dn 32116 # 16r:16q
Attributes: Size = (Word)
Description: Divides the unsigned destination operand by the unsigned source operand

and stores the unsigned result in the destination. The instruction divides a long word
by a word. The result is a quotient in the lower word {least-significant 16 bits) and the
remainder is in the upper word {most significant 16 bits) of the result.

Two special conditions may arise during the operation:
1. Division by zero causes a trap
2. Overflow may be detected and set before the instruction completes. If the in-
struction detects an overflow, it sets the overflow condition code, and the op-
erands are unaffected.

Condition Codes:

X Not affected

N Set if the quotient is negative. Cleared otherwise. Undefined if overflow or divide
by zero occurs.

Z Set if the quotient is zero. Cleared otherwise. Undefined if overflow or divide by

ZEro occurs,

V' Set if division overflow occurs; undefined if divide by zero occurs. Cleared oth-
erwise.

C Always cleared

Instruction Format (word form):

15 " 1 ” n U] 9] 7 B -] 4 i 2 ! o

5 ; = EFFECTIVE ADDRESS
mﬂ-l ’ L e pr; ' ‘ ' ‘ MODE | ReciSTER

EOR EOR

Exclusive OR Logical

Operation:
Source @ Destination # Destination
Assembler
Syntax: EOR Dn,{ea)
Attributes: Size = (Byte, Word, Long)
Description: Performs an exclusive OR operation on the destination operand using the

source operand and stores the result in the destination location. The size of the op-
eration may be specified to be byte, word, or long. The source operand must be a
data register. The destination operand is specified in the effective address field.

Condition Codes:
L O QO (OO R
[Z i~ -Telsl

Not affected .
Set if the most-significant bit of the result is set. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Always cleared

Always cleared

O<MNZ X

Instruction Format (word form):

[C T T - N - B .
| 1 0 | 1 1 REGISTER
Instruction Fields:) _
Register field — Specifies any of the eight data registers

L] L] 1 6 5 4 3 2 1 o
EFFECTIVE ADDRESS

MODE | REGISTER

| e

Op-Mode field —
Byte Word Long Operation
100 0 110 ((ea)) @ ((Dn)) # (ea)

DIVU

Instruction Fields:
Register field — Specifies any of the eight data registers. This field always specifies
the destination operand.
Effective Address field — Specifies the source operand. Only data addressing modes
are allowed as shown:

DIVU

Unsigned Divide

Addressing Mods | Mode | Register Mode | Mode | Register
On 000 reg, number:Dn Ixxx} W m 000
An = — ol n 001
{An} 010 | req numbsr:_ﬁi #idata) m 100
(An} + o1 req. number:An
{An) 100 | reg. number:An [B
Id1g.An) 101_| reg. number;An hePel | | o0 |
{dg.An Xn) 110 | req. number-An @gPCXn | 1m on

NOTE
Overflow occurs if the quotient is larger than a 16-bit signed integer. The
instruction checks for overflow at the start of execution. If the upper word
of the dividend is greater than or equal to the divisor, the overflow bit is set
in the condition codes, and the instruction terminates with the operands
unchanged.

EOR EOR

Effective Address field — Specifies the destination operand. Only data alterable ad-
dressing modes are allowed as shown:

Exclusive OR Logical

Mode

| Addressing Mode | Mode Register l Mode | Ragister
Dn 000 reg. number:Bn | e] W 11) -OW
An - - 1 foxx L m 001
{An) 010 | reg. number:An | #(data) - -
{An] + on reg. numbaer:An
] 100 reg. number:An | -
[dyg.An) 101 reg. number:An {dygPCl — =
| idgAnXn) 10 | reg. ﬂumbel:inj 1dg.PC.Xn} - | -
NOTE

Memory to data register operations are not allowed. Most assemblers use
EORI when the source is immediate data.

14

EORI EORI

Exclusive OR Immediate

Operation:
I Data @ D ion # Destination
Assembler
Syntax: EORI #(data),{ea}
Attributes: Size = (Byte, Word, Long)
Description: Performs an excl OR operation on the d ion operand using the

immgdiate dau_a and the destination operand and stores the result in the destination
location. The size of the operation may be specified as byte, word, or long. The size
of the immediate data matches the operation size.

Condition Codes:

ok W ¥ ¥k

[-T-T-TwTs]

X Not affected

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.

V Always cleared

C Always cleared

Instruction Format:

L] " 13 12 " il L B 7 8 5 4 3 2 1 0
o I o ‘ o ‘ [} [1] [} ‘ 1 ‘ L] SIZE EHFECTIE ADDMERS
_ MODE | mesister
WORD DATA 116 BITS) BYTE DATA (8 BITS)

LONG DATA (32 BITS)

Instruction Fields:
Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation

EORI
to CCR

EORI
to CCR

Exclusive OR Immediate
to Condition Code

Operation:
Source @ CCR » CCR
Assembler
Syntax: EORI #{data},CCR
Attributes: Size = (Byte)
Description: Performs an exclusive OR operation on the condition code register using

the immediate operand and stores the result in the condition code register (low-order

EORI EORI

Effective Address field — Specifies the destination operand. Only data alterable ad-
dressing modes are allowed as shown:

Exclusive OR Immediate

T

Ad Mode | Mode | Register Addressing Mode | Mode i
on 000 | reg number:On oW | | 000
An - | - | booad | m 001
an} 010 I reg. number-An #idata) o=
{An) + on | reg. number:An .
- [An} 100 reg. number:An B]
idyg.Anl 1M reg. number:An [dy.PC) -— -
(dg.An.Xn) 10 reg. number:An [dg.PC.Xn) - -

Immediate field — (Data immediately following the instruction):
If size = 00, the data is the low-order byte of the immediate word
If size = 01, the data is the entire immediate word
If size = 10, the data is next two immediate words

EORI
to SR

EORI
to SR

Exclusive OR Immediate to the Status Register

(Privileged Instruction)

Operation: If supervisor state

then Source @ SR # SR

else TRAP
Assembler
Syntax: EORI #(data),SR
Attributes: Size = (Word)
Descripti Performs an exclusive OR operation on the contents of the status register

byte of the status register). All implemented bits of the condition code are
affected.

Condition Codes:

Changed if bit 4 of immediate operand is one. Unchanged otherwise.
Changed if bit 3 of immediate operand is one. Unchanged otherwise.
Changed if bit 2 of immediate operand is one. Unchanged otherwise.
Changed if bit 1 of immediate operand is one. Unchanged otherwise.
Changed if bit 0 of immediate operand is one. Unchanged otherwise.

O<NZ X

Instruction Format:

15 " 17 n” n n t) L] 1 L] 5 L} 3 2 1 0

%lin§0|ulllll1]ltﬂlﬂ_{

0) BYTE DATA (8 BITS)

:.

A

ols

B

|-

-]
m

u;ing the immediate operand and stores the result in the status register. All imple-
mented bits of the status register are affected.

Condition Codes:

N N R

X Changed if bit 4 of immediate operand is one. Unchanged otherwise.
N Changed if bit 3 of immediate operand is one. Unchanged otherwise.
Z Changed if bit 2 of immediate operand is one. Unchanged otherwise.
V Changed if bit 1 of immediate operand is one. Unchanged otherwise.
C Changéed if bit 0 of immediate operand is one. Unchanged otherwise.

Instruction Format:
1 0

2
[To] n"{

15 " 3 12 |l] 8 8 7 L] 5 4 3

{u]u[n[nlt]nJrInlnil',1tr[1

__WORD DATA (16 8ITS)

15

EXG

Exchange Registers

Operation: Rx & Ry
Assembler EXG Dx,Dy
Syntax: EXG Ax,Ay
EXG Dx,Ay
EXG Ay, Dx
Attributes: Size = (Long)
Descripti Exch the contents of two 32-bit registers. The instruction performs

three types of exchanges:
1. Exchange data registers
2. Exchange address registers
3. Exchange a data register and an address register

Condition Codes:
Not affected

Instruction Format:

15 " (}] 12 n 0 9 B 7 L 5 L} 3 2 1 (]

il Tolol] 3]

REGISTER fx

Instruction Fields:

Register Rx field — Specifies either a data register or an address register depending
on the mode. If the exchange is between data and address registers, this field always
specifies the data register.

Op-Mode field — Specifies the type of exchange:

01000 — Data registers
01001 — Address registers
10001 — Data register and address register

Register Ry field — Specifies either a data reg or an gister depending
on the mode. If the exchange is between data and address registers, this field always
specifies the address register.

Ad

ILLEGAL ILLEGAL

Take lliegal Instruction Trap

Operation: SSP - 2 # SSP; Vector Offset § (S5P);
SSP - 4 ¢ SSP; PC ¢ (SSP);
SSP — 2 # 55P; SR # (S5P);
lilegal Instruction Vector Address # PC
Assembler
Syntax: ILLEGAL
Attributes: Unsized
Description: Forces an illegal instruction exception, vector number 4. All other illegal

instruction bit patterns are reserved for future extension of the instruction set and
should not be used to force an exception.

Only the MC68010 stores a four-word exception stack frame by first writing the ex-
ception vector offset and format code to the system stack. All processors write the
PC, followed by the SR, to the system stack.

Condition Codes:
Not affected
Instruction Format:

15 " 13 17 n 0w 9 [] 1 &

W1 1ToeJo]t JTelv[ol 1 v]¢

EXT

EXT Sign Extend

Operati D Sign-E ded # Destinati

Assembler EXT.W Dn Extend byte to word

Syntax: EXT.L Dn Extend word to long word

Attributes: Sizes (Word, Long)

Description: Extends a byte in a data register to a word or a word in a data register to

icati i i i byte to
a long word, by replicating the sign bit to the left. If the operation extends a
a wo?d. bit 1?lvo:1!)ha d d data regi is copied to bits [15:8] of that data
ister. If the operati ds a word to a long word, bit [15] of the designated
data register is copied to bits [31:16] of the data register.

Condition Codes:
c

e

Not affected)
Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Always cleared

Always cleared

O<MNZ X

Instruction Format:
s W1 omoonom
(e[loelol1Jo]

H 1

P8 8 i -3 0
gemooe [o [o | o [masen]

]
[

Instruction Fields:)))
Op-Mode field — Specifies the size of the sign-extension operation:
010 — Sign-extend low-order byte of data register to word
011 — Sign-extend low-order word of data register to fong
Register field — Specifies the data register is to be sign-extended

JMP

Jump
Operati Destination Address # PC
Assembler
Syntax: JMP (ea)
Attributes:
Unsized
Description: Program execution continues at the effective address specified by the in-

struction. The addressing mode for the effective address must be a control addressing
mode.

Condition Codes:
Not affected

Instruction Format:

IES I

Instruction Fields:
Effective Address field — Specifies the address of the next instruction. Only control
addressing modes are allowed as shown:

EFFECTIVE ADDRESS]

MODE | mesister |

Addressing Mode | Mode Registar Addressing Mode | Mode Register

Dn —_ -_ {x) W m 000]

| An - — {xxx).L 1 001

(An} 010 reg. numberAn #{data} =) o

AR + — =3

= An} — =]

IdqgAn] Ll rag. number:An L (d1g.PC 1 Mo
{dg.An, Xn) 110 reg. numberAn | [dg.PC.Xn) AL} o1 |

16

JSR JSR

Jump to Subroutine

Operation: SP — 4 9 Sp; PC# (SP)
Destination Address ¢ PC
Assembler
Syntax: JSR (ea)
Attributes: Unsized
Description: Pushes the long word address of the instruction immediately following the

JSR instruction onto the system stack. Program execution then continues at the ad-
dress specified in the instruction,

Condition Codes:
Not affected

Instruction Format:

15 " 13 7 n n 9 B 7 B 5 4 k| 2 1 L}

EFFECTIVE ADDRESS
MODE | meaisten
Instruction Fields:

Effective Address field — Specifies the address of the next instruction. Only control
addressing modes are allowed as shown:

A Mode | Mode Register 9 Mode | Mode Register

Dn - — () W m 000
An = - [xxxh L M 00
(An) 010 reg. number:An #{data) = -

(An) + — =

- (An] - =
{d1g.An) 101 reg. number:An Idyg.PC) m 010
[dg.An,Xn} 10 reg. number:An (dg.PC.Xn) m o

LINK LINK

Link and Allocate

Operation: Sp - 4% Sp; An ¢ (SP);
SP# An; SP+d#SP
Assembler
Syntax: LINK An, #(displacerment}
Attributes: Size = Unsized
Description: Pushes the contents of the specified address register onto the stack. Then

loads the updated stack pointer into the address register. Finally, adds the 16-bit sign-
extended displacement operand to the stack pointer. The address register occupies
one long word on the stack, The user should specify a negative displacement in order
to allocate stack area.

Condition Codes:
Not affected

Instruction Format:

"% " 3 12 n] 9 8 1 (] 5 4 3 2 1]
A T v Toelol v [v T v Tolel v Tol v o] weasrer |
[WORD DISPLACEMENT

Instruction Fields:
Register field — Specifies the address register for the link
Displacement field — Specifies the twos complement integer to be added to the stack
pointer

NOTE

LINK and UNLK can be used to maintain a linked list of local data and pa-
rameter areas on the stack for nested subroutine calls.

LEA Load Effective Address

LEA

Operation: (ea) # An

Assembler

Syntax: LEA (ea),An

Attributes: Size = (Long)

Description: Loads the effective address into the specified address register. All 32 bits

of the address register are affected by this instruction.

Condition Codes:

Not affected

Instruction Format:
5 W B3 o om wn w % 8 1 & 5 4 3 @ 1 @

‘ ’ [! I °] . ’ . [b ‘) ‘ .] unu:”mM]mw::slsm
Instruction Fields:

Register field — Specifies the address register to be updated with the effective address
Effective Address field — Specifies the address to be loaded into the address register.
Only control addressing modes are allowed as shown:

Add Mode | Mode Ragister Addressing Mode | Mode | Register
On - — Txoxx) W m | 000
An - — (xxxl L m on
Fsr [An) 010 reg. number: An #idata} —_ -
(An] + = -
e
- {An} -_ e
{dygAn) o reg. number:An (d15.PC) m 010
{dg.An.Xn} 1o reg. number-An (dg.PC Xn} m on
LS L, LSR Logical Shift LS L, LSR

Operation: Destination Shifted by (count} # Destination
Assembler LSd Dx,Dy
Syntax: LSd #(data},Dy
LSd (ea)
where d is direction, L or R
Attributes: Size = (Byte, Word, Long)
Description: Shifts the bits of the operand in the direction specified (L or R). The carry

bit receives the last bit shifted out of the operand. The shift count for the shifting of
a register is specified in two different ways:

1. Immediate — The shift count {1-8) is specified in the instruction,

2. Register — The shift count is the value in the data register specified in the in-

struction modulo 64.

The size of the operation for register destinations may be specified as byte, word, or
long. The contents of memaory, (ea), can be shifted one bit only, and the operand size
is restricted to a word.

The LSL instruction shifts the operand to the left the number of positions specified as
the shift count, Bits shifted out of the high order bit go to both the carry and the extend
bits; zeros are shifted into the low-order bit.

L oy |
T

5L

The LSR instruction shifts the operand to the right the number of positions specified
as the shift count. Bits shifted out of the low urder bit go to both the carry and the
extend bits; zeros are shifted into the high order bit.

——{]
]

17

LSL,LSR Logical Shift LSL,LSR

Condition Codes:

S;at according to the last bit shifted out of the operand. Unaffected for a shift count
of zero.

Set .if the result is negative. Cleared otherwise.

Set if the result is zero. Cleared otherwise.

Always cleared

Set according to the last bit shifted out of the operand. Cleared for a shift count
of zero.

O=MNZ X

I ction Format (Regi Shifts):

L] L] 1 7 n w k] 8 ¥ L} 5 4 k] 1)

[T T T o [coummmeasien | & | see | o [o [1 [meosen]

I ction Field (Regi Shifts):
Count/Register field:
Ifi/r = 0, this field contains the shift count. The values 1-7 represent shifts of 1-7;
value of 0 specifies a shift count of 8,
If iir = 1, the data register specified in this field contains the shift count (modulo

dr field — Specifies the direction of the shift:
0 — Shift right
1 — Shift left
Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation
ifr field:
If ifr = 0, specifies immediate shift count
If iir = 1, specifies register shift count
Regi field — Specifies a data register to be shifted

Instruction Format (Memory Shifts):

5 " 1

3 12 n i} 9 B
I:J||1!, e lol o lals | EFFECTIVE ADDRESS
| | MODE | REGISTER

MOVE Move Data from Source to Destination MOVE

Operation: Source ¢ Destination

Assembler
Syntax: MOVE (ea),{ea)

Attributes: Size = (Byte, Word, Long)

Description: Moves the data at the source to the destination location, and sets the
condition codes according to the data. The size of the operation may be specified as
byte, word, or long.

Condition Codes:

Not affected

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Always cleared

Always cleared

O<NZ X

Instruction Format:
[T TR S B T T S 1 B 1 5 5 4 1 2 1]

o | SIZE DESTINATION SOURCE
REGISTER | MODE MODE | mesister

Instruction Fields:
Size field — Specifies the size of the operand to be moved:
01 — Byte operation
11 — Word operation
10 — Long operation

LSL,LSR Logical Shift

Instruction Fields (Memory Shifts):
dr field — Specifies the direction of the shift:
0 — Shift right
1 — Shift left

LSL,LSR

Effective Address field — Specifies the operand to be shifted. Only memory alterable

addressing modes are allowed as shown:

Adaresing Mods | Mode | Raister | [Adaressing Mode | ode | meisr |
B “.E_.___ —_ = — | (W m 000
An —_ - w1 1 001
(An} i 0w reg. numberAn | #(datay i s
{An}+ o reg number-An | . _

B --—-[ﬂ-l;l_‘) mn- T feg numberAn I I 4 =
tdyg.An] ‘ 101 | reg rumber:An | {dyg,PCI — —
{dg.An.Xn) ‘; 10 Ir reg. number:An | {ag.PC. Xni - -

MOVE Move Data from Source to Destination

MOVE

Destination Effective Address field — Specifies the destination location. Only data
alterable addressing modes are allowed as shown:

Addressi ﬁnd-_ Mode | Register A M:Modo Registor
on 000 | req. numberDn [xxx] W ! m) 000
) An _ ___I‘.n::l._L m nm_ B
(An) 010 | reg. number.An wsa = - i
{An) « on reg. number:An i .
- {An) 100 reg. numberAn . e
idyg.An) 101 reg. number:An ___tgPC) = -
{dg.AnXa} 10_| reg. numberan | (ggPCXn | -

Source Effective Address field — Specifies the source operand. All add

are allowed as shown:

[Rasing e | e | e o | e | g}
| On] 000 reg. number_ Dn {xnnh W m 000 :
An® 001 | reg. number An - m 001 |
iAn) 010 | reg. number An s 111 100
{An} + o1 reg number An o
-Mni__ " _'II??_ _reg number: An N
L ldgAn 1 fEG. number An Idyg.PCH 1‘..“.. : E_n_]
L [dg.AnXn) 10 reg. number:An | [dg.PC Xn) 1 011 |

*For byte size operation. address register direct 1s notl allowed,

Notes:

1. Most assemblers use MOVEA when the destination is an address register.
2. MOVEQ can be used to move an immediate 8-bit value to a data register.

18

MOVEA MOVEA

Move Address

Operation: Source # Destination

Assembler

Syntax: MOVEA (ea),An

Attributes: Size = (Word, Long)

Description: Moves the contents of the source to the d on address . The

size of the operation is specified as word or long. Ward-size source operands are sign-
extended to 32-bit quantities.

Condition Codes:
Not affected

Instruction Format:

L] L} &} n n 1] L]] 7 § 5 4 3 2 1 o

SIZE

DESTINATION |
REGISTER |

SOURCE
MODE | ReGisTeR

Instruction Fields:

Size field — Specifies the size of the operand to be moved:

11— Word operation. The source operand is sign-extended to a long operand and
all 32 bits are loaded into the address register.

10 — Long operation

Destination Register field — Specifies the destination address register

Effective Address field — Specifies the location of the source operand. All addressing
maodes are allowed as shown:

T

| Addressing Mode | Mode | Register L Mode | Mode Register

Dn_ 1 000 | reg number Dn {xn) W m 000
— ‘ﬂ._ll_ R o | reg E\:Imt;ef:ﬂﬂ faoexh L m 001
A | 00 | reg number:An #(data) 1 100

tani + (28] _reg- number:An

tant 100 reg. number-An N]
| tdigan 101 | reg number:An ia1sP0) m oo
| dganxni 110 | reg. number:An g, PC.Xn) 1 on

MOVE
from SR

MOVE
from SR

Move from the Status Register
{Privileged Instruction — MC68010 Only)

Operation: SR # Destination
MC68010 only:
If Supervisor state
then SR ¢ Destination
else TRAP
Assembler
Syntax: MOVE SR.(ea}
Attributes: Size = (Word)
Description: Moves the data in the status register to the destination location. The des-
tination is word length. Unimplemented bits are read as zeros.
Condition Codes:
Not affected
Instruction Format:
B W1l 12 om w8 8 7 B85 4 12 1]
)]
EFFECTIVE ADDRESS
Lu‘1]n]n|n|n{n‘n‘1|“r| MODE ! REGISTER !
Instruction Fields:

Effective Address field — Specifies the destination location. Only data alterable ad-
dressing modes are allowed as shown:

Addraseing Mods | Woda Bogister Mode | Mode | Register |
Dn J reg. number:Dn L) W I_I'! 00g '
An - - P L m 001
[Anj 010 reg. number:An #idata) - - |
[An}+ 01 | reg. number:An
- (An} 100 rag. number.An
(dyg.An) | 101 | reg. number:An [dy5.PCY | - . B
Idg,An,Xn) 110 | reg. number:An iddg.PC. XA} [- =
NOTE

Use the MOVE from CCR instruction to access only the condition codes. In
the MC68000, MC68HCO000, and MCE8008, memory destination is read before
it is written to.

MOVE
from CCR

MOVE
from CCR

Move from the
Condition Code Register

Operation: CCR # Destination

Assembler

Syntax: MOVE CCR,iea)

Attributes: Size = (Word)

Description: Moves the condition code bits (zero extended to word size) to the desti-

nation location. The operand size is a word. Unimplemented bits are read as zeros,

Condition Codes:
Not affected

Instruction Format:
1%
B
Instruction Fields:

Effective Address field — Specifies the destination location. Only data alterable ad-
dressing modes are allowed as shown:

" 3 12 n 10 9 8 7 § § 4 3 2 1]

T T . T T T T e
(]] v 1] 1] !

I |¥] | MooE | ReBiSTER

Addressing Mode | Made Addrassing Mode
on 000, | fogc imbier:0d L
An — — . [EETANN
{An) ik [1] reg. number:An | #idata -
(An] - on req numbc{".ﬁnu
- tAn) 100 | reg. numbesAn | B
tdyg Ant | 101 | reg number-An ___lgPC) = -
g An.Xn) 110 | reg number:An. | Idg PC.Xn)) =
NOTE
MOVE from CCR is a word operation. ANDI, ORI, and EQRI to CCR are byte
operations.
to CCR Move to Condition Codes to CCR
Operation: Source # CCR
Assembler
Syntax: MOVE (ea),CCR
Attributes: Size = (Word)
Description: Moves the low-order byte of the source operand to the condition code

register. The upper byte of the source operand is ignored; the upper byte of the status

register is not altered.

Condition Codes:

Set to the value of bit 4 of the source operand
Set to the value of bit 3 of the source operand
Set to the value of bit 2 of the source operand
Set to the value of bit 1 of the source operand
Set to the value of bit 0 of the source operand

O<MNZX

Instruction Format:
[TR T - S TR R T | 1 6 5 4 3 H i]

EFFECTIVE ADDRESS
MODE REGISTER

Instruction Fields:

Effective Address field — Specifies the location of the source operand. Only data

addressing modes are allowed as shown:

Addressing Medi | Regiater [Acamaaing Mads | Moce Register
1) —I”Dn-“-- ‘m-mn reg. r;umhe(:[)n [). W 111 _nm___ s
An - sl o] Ixmx).L m 001
B (an o01e reg. number An _ widaa 11 100
. {An) -] on reg. number:An
o a1 100 Loreg: aumbediin
(dy5.An) 101 reg. number An 1d14.PCH i m E'@ _
{dg.An Xn} 1o reg. number An 1dg.PC.Xn) m on
NOTE ,
MOVE to CCR is a word operation. ANDI, ORI, and EQORI to CCR are byte
operations. 4

19

MOVE
to SR

MOVE
to SR

Move to the Status Register
(Priviledged Instruction)

Operation: If supervisor state
then Source # SR
else TRAP
Assembler
Syntax: MOVE iea},SR
Attributes: Size = (Word)
Description: Moves the data in the source operand to the status register, The source

operand is a word and all implemented bits of the status register are affected.

Condition Codes:
Set according to the source operand

Instruction Format:

15 " 13 1H n 0 9 L] !] 5 4 3 2 1 a

N FFECTI]
In l i | il @i f \ ; ' EFFECTIVE ADDRESS
d " | MoDE | REGISTER |

Instruction Fields:
Effective Address field — Specifies the location of the source operand. Only data
addressing modes are allowed as shown:

| Addressing Mode | Mode | Register | | Adcressing Mode | Mode | Rogister
Dn 0oo reg number.Dn () W 11 000
An - — [xxx).L 1 001
(L] 010 | reg number An #idatar m i 100
{An) - 011 | reg number-An _ ! {
(An) 100 reg- inf[rme-f.aln —] =
fdigAnl | 101 reg nnmhnr_d_l_n_ J-_id-w-.PCI [m o1
| [dgAnXn] 10| reg number:An | {dg.PC.Xn1 |[m on
MOVEC Move Control Register MOVEC

{Privileged Instruction)

Operation: If supervisor state
then Rc # Rn or Rn # Rc
else TRAP
Assembler MOVEC Rc,Rn
Syntax: MOVEC Rn,Rc
Attributes: Size = (Long)
Description: Moves the contents of the specified control register (Rc) to the specified

general register (Rn) or copies the contents of the specified general register to the
specified control register. This is always a 32-bit transfer even though the control
register may be implemented with fewer bits. Unimplemented bits are read as zeros.

Condition Codes:
Not affected

Instruction Format:

15 7] 13 12 n 1] L] 8 7 L 5 4 3 z 0

T
L
REGISTER |

L] -
-. L3 CONTROL REGISTER

Instruction Fields:
dr field — Specifies the direction of the transfer:
0 — Control register to general register
1 — General register to control register
A/D field — Specifies the type of general register:
0 — Data register
1 — Address register
Register field — Specifies the register number
Control Register field — Specifies the control register

Hex Control Register

000 Source Function Code (SFC) register

001 Destination Function Code (DFC) register
800 User Stack Pointer (USP)

801 Vector Base Register (VBR)

Any other code causes an illegal instruction exception.

o Jo [T [vToje v v 1T vTe]v]e]
i ————

MOVE
USP

MOVE
USP

Move User Stack Pointer
(Privileged Instruction)

Operation: If supervisor state
then USP # An or An ¢ USP
else TRAP
Assembler MOVE USP,An
Syntax: MOVE An,USP
Attributes: Size = {Long)
Description: Moves the contents of the user stack pointer to or from the specified
address register
Condition Codes:
Not affected

Instruction Format:

15 " n n n n 9 L} 7 (] 5 q 3 H 1 [}

I N T N N N T S S A T

Instruction Fields:
dr field — Specifies the direction of transfer:
0 — Transfer the address register to the USP
1 — Transfer the USP to the address register
Register field — Specifies the address register for the operation

MOVEM MOVEM

Move Multiple Registers

Operation: Registers # Destination
Source ¢ Registers
Assembler MOVEM register list,(ea}
Syntax: MOVEM (ea),register list
Attributes: Size = (Word, Long)
Description: Moves the contents of selected registers 1o or from conseculive memory

locations starting at the location specified by the effective address. A register is selected
if the bit in the mask field corresponding to thal register is set. The instruction size
determines whether 16 or 32 bits of each register are transferred. In the case of a
word transfer to either address or data registers, each word is sign-extended to 32
bits, and the resulting long word is loaded into the associated register.

Selecting the addressing mode also selects the mode of operation of the MOVEM
instruction, and only the control modes, the predecrement mode, and the postincre-
ment mode are valid. If the effective address is specified by one of the control modes,
the registers are transferred starting at the specified address, and the address is in-
cremented by the operand length (2 or 4) following each transfer. The order of the
registers is from data register 0 to data register 7, then from address register 0 to
address register 7.

If the effective address is specified by the predecrement mode, only a register to
memaory operation is allowed. The registers are stored starting at the specified address
minus the operand length (2 or 4), and the address is decremented by the operand
length following each transfer. The order of storing is from address register 7 to
address register 0, then from data register 7 to data register 0. When the instruction
has completed, the decremented address register contains the address of the last
operand stored,

If the effective address is specified by the postincrement mode, only a memory to
register operation is allowed. The registers are loaded starting at the specified address;
the address is incremented by the operand length (2 or 4) following each transfer. The
order of loading is the same as that of control mode addressing. When the instruction
has ¢ leted, the incr d address register contains the address of the last
operand loaded plus the operand length.

Condition Codes:
Not affected

Instruction Format:

WooWo3o om w8 & 1 & 5 4 3 2 1 0
LA - 2+ & & 9 = N
[2 & : | T | EFFECTIVE ADDRESS
o 2] 4 dr | 0|0 g & SIZE MoDE ! REGISTER
- REGISTER LST MASK

20

MOVEM MOVEM

Instruction Field:

MOVEM MOVEM

Move Multiple Registers Move Multiple Registers

For the predecrement mode addresses, the mask correspondence is

dr field — Specifies the direction of the transfer: reversed:
s_ :199'5;3' ';0 memory B W13 o172 om w4 8 1 6 5 4 3 ? ! o
A em: 0 re . - e . - - 1
Size fi _rv_lglster_ . .’ [oo [on [o2 [os [o8 | 05 o6 [00 [o [w0 [a2 | aa[ae]oms |6 ar]
ize field — Specifies the size of the registers being transferred: B

0 — Word transfer
1 — Long transfer

Effective Address field — Specifies the memory address for the operation. For register
to memory transters, only control alterable addressing modes or the predecrement
addressing mode are allowed as shown:

NOTE

An extra read bus cycle occurs for memory operands. This accesses an op-
erand at one address higher than the last register image required.

| Addressing Mode | Mode | Register | Addressing Mode | Mode | Register
Dn = | oW | | 000
An = IxxxhL 1 .Tn [V
3 {An} o reg num‘be!.: #rdata) -) - i
| ianj- - —] B
. U\nl‘__]ml T reg nun_-t‘n_rg\n_ |
| {digAn) 01 feg numberAn k. (dyg.PCI — —
tdgAn.Xn} 110 | reg number-an {4g,PC.Xn) = -

For memory to register transfers, only control addressing modes or the postincrement
addressing mode are allowed as shown:

[Addressing Mode] Maode Register ﬁddrus‘l‘n_n Mode T Mndc R-gi-ulr
On = = - [xxx | W I m ooo'_‘
| An - - [wex). L 1m _tm
L (A} 010 reg number An #icata — —
Lo AR} - L reg. number:An | .
(An) — -
{dy5.An) 10| reg. number:An | __tch;.PCI m_ | 0o |
lds)\n_.xm mo Feg. numl_:er.An_ [dgPC,Xn} m [o1 _J

Register List Mask field — Specifies the registers to be transferred. The low order bit
corresponds to the first register to be transferred: the high-order bit corresponds
to the last register to be transferred. Thus, both for control modes and for the
postincrement mode addresses, the mask correspondence is:

(1] 1] 13 12 n w 5 8 7 13 5 4 3 i 1]
Lo [mw [m[w[w]a o]0 o]

05 [0 03 | o [o1 | oo |

MOVEP MOVEP

Condition Codes:

Move Peripheral Data

MOVEP MOVEP

Move Peripheral Data

Operation: Source # Destination Nt ttfocied
Assembler MOVEP Dx,(d,Ay)
Syntax: MOVEP (d,Ay),Dx Instruction Format:

3 B M1 1 B w8 & 1T & 8 4 3 2 1 0
Atklates: - Slzec=:Word, Longy [170 1o [o[owameswn | _oemooe [o [o [1 [aoomess ﬂe_ﬁ's!?.ﬁ__J
Description: Moves data between a data register and alternate bytes within the address | IUAPCALEMIENT 115 SIS - o,

space (typically assigned to a peripheral), starting at the location specified and incre- .
menting by two. This instruction is designed for 8-bit peripherals on a 16-bit data bus. Instruction Fields:

Data Register field — Specifies the data register for the instruction

The high-order byte of the data register is transferred first and the low order byte is

red last. The y add is specified in the address register indirect plus
16-bit displacement addressing mode. If the address is even, all the transfers are to
or from the high order half of the data bus; if the address is odd, all the transfers are
to or from the low order half of the data bus. The instruction also accesses alternate
bytes on an 8-bit bus.

Example: Long transfer to/from an even address
Byte Organization in Register
n u 2 615 s 1]
[HLORDER [MID.UPPER I MID-LOWER I LOW-DROER]

Byte Organization in Memory {Low Address at Top)

s 87 v
HI-ORDER o]
MID-UPPER
MID-LOWER
LOW-OROER

Example: Word transfer to/from an odd address
Byte Organization in Register

£l u 2 16 15 8 1

| T WLORDER |

LOW-DRDER

Byte Organization in Memory (Low Address at Top)
1% 8 7 o
[[HI-ORDER |
! | LOW-UPPER |

Op-Mode field — Specifies the direction and size of the operation:
100 — Transfer word from memory to register
101 — Transfer long from memory to register
110 — Transfer word from register to memory
111 = Transfer long from register to memory
Address Register field — Specifies the address register which is used in the address
register indirect plus displacement addressing mode
Displacement field — Specifies the displacement used in the operand address

21

MOVEQ MOVEQ

Move Quick

Operation: Immediate Data ¢ Destination

Assembler

Syntax: MOVEQ #(data),Dn

Attributes: Size = (Long)

Description: ~ Moves a byte of immediate data to a 32-bit data register. The data in an

B-bi_l field within the operation word is sign extended to a long operand in the data
register as it is transferred.

Condition Codes:

Not affected

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Always cleared

Always cleared

O<MNZ X

Instruction Format:

15 " 13 i " 1w 9 8 L} 6 5] 3 H 1 o

o T T v [T remsier | o | ——

Instruction Fields:
Registgr field — Specifies the data register to be loaded
Data field — 8 bits of data, which are sign extended to a long operand

MOVES MOVES

Move Address Space
[Privileged Instruction)

Effective Address Field — Specifies the source or destination location within the al-
ternate address space. Only memory alterable addressing modes are allowed as

shown:
[Addressing Mode | Made | Register | | Addressing Mode | Mode |
i Dn) i = - :] W |om
| An | —) — ‘, {ax) L I
ml-u. I me reg. number:An | #datas = = o
mnl.- an g number An I A
o 1An) 100 reg. number-An
|. 10;-5-,:ln| w0 reg number An 1d1g.PC) — =]
(dg.An.Xn 110 | reg numberAn | {dg.PC.Xn) = |

AD field — Specifies the type of general register:
0 — Data register
1 — Address register

Register field — Specifies the register number

dr field — Specifies the direction of the transfer:
0 — From (ea) to general register
1 — From general register lo (ea)

NOTE
For either of the two following examples with the same address register as
both source and destination
MOVES.x An,(An) +
MOVES.x An, - (An)
the value stored is undefined. The current implementation of the MCE8010
stores the incremented or decremented value of An.

MOVES MOVES

Move Address Space
(Privileged Instruction)

Operation: If supervisor state
then Rn # Destination [DFC] or Source [SFC] ¢ Rn
else TRAP
Assembler MOVES Rn,(ea}
Syntax: MOVES {ea),Rn
Attributes: Size = (Byte, Word, Long)
Description: Moves the byte, word, or long operand from the specified general register

to a location within the address space specified by the destination function code (DFC)
register; or, moves the byte, word, or long operand from a location within the address
space specified by the source function code {SFC) register to the specified general
register.

If the destination is a data register, the source operand replaces the corresponding
low-order bits of that data register, depending on the size of the operation. If the
destination is an address register, the source operand is sign extended to 32 bits and
then loaded into that address register,

Condition Codes:
Not affected

Instruction Format:

(L] " I 3 n L[] 9] 7 13 5 4 1 2 L]
: [-

o oo o v]| I
! : ’ st REGISTER
| a0 REGISTER @ | o | e o] oo oo o]eo]o]cu

Instruction Fields:
Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation

MULS MULS

Signed Multiply

Operation: Source * Destination # Destination

Assembler

Syntax: MULS.W (ea),Dn 16«16 # 32

Attributes: Size = (Word)

Description: Multiplies two signed operands yielding a signed result. The multiplier and

multiplicand are both word operands, and the result is a long word operand. A register
operand is the low order word; the upper word of the register is ignored. All 32 bits
of the product are saved in the destination data register.

Condition Codes:

S e A

X Not affected

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.

V Always cleared

C Always cleared

Instruction Format (word form):

B M 13)2 m w8 8 1 & 5 4 3 2 1 @
!ri‘n—‘rn‘nsshmn‘1|||1l

Instruction Fields:
Register field — Specifies a data register as the destination
Effective Address field — Specifies the source operand. Only data addressing modes
are allowed as shown:

EFFECTIVE ADDRESS |
MODE | REGISTER |

Addressing Mode | Mode | Register Addressing Mods | Mode | Register
Cin 000 rég. number:On Anxxl W pom wo |
An — - | bl i m N'I.
[An) 010 | reg. number:An #idata) 111 100
1An] + 01 | _reg. number An _
fAnk) T_O_B_ reg. number An
{dyg.An] 101 | reg number An idyg.PCH wmo oo |
{dg.An,Xn) 10 g, number:An [dg.PC.Xn} nm M1 _‘

22

MULU MULU

Unsigned Multiply

Operation: Source * Destination ¢ Destination

Assembler MULU.W (ea),Dn 16+ 16 ¢ 32

Syntax:

Attributes: Size = (Word)

Description: Multiplies two unsigned operands yielding an unsigned result. The mul-

tiplier and multiplicand are both word operands, and the result is a long word operand.
A register operand is the low-order word; the upper word of the register is ignored,
All 32 bits of the product are saved in the destination data register.

Condition Codes:
XN v ¢
C-T-T-T-Te]

X Not affected

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.

V Always cleared

C Always cleared

Instruction Format (word form):

% it} 3 2 n w L) 8 1 B

"

4 3 2 1 (]
EFFECTIVE ADDRESS
MODE __ BEGISTER |

‘I]liil‘, e‘ REGISTER JB
1 2

Instruction Fields:
Register field — Specifies a data register as the destination

Effective Address field — Specifies the source operand. Only data addressing modes

are allowed as shown:

Lﬁdﬂ‘uuﬂm Mode | Mode Register Add ing Made | Mode Rngln;r
On 000 rig. -_-uTI_;_g[._E:t; | e . 1 ow -
| i - — {xoaxh. L m 001
1Anl 010 reg. pumber An #(data) m 100 |
m_m t l-};l_ rég. number:An) |
- [An) 100 reg. number An -)
[dyg.An) 101 reg. number:An [y PCI 111 010
| ldgAnXn) 110 | reg. number. An (dg,PC.Xn) m | on

NEG NEG

Negate

Operation: 0 - (Destination) # Destination
Assembler
Syntax: NEG (ea)
Attributes: Size = (Byte, Word, Long)
Description: Subtracts the destination operand from zero and stores the result in the
destination location. The size of the operation is specified as byte, word, or long.
Condition Codes:
X N 1 v c

L
X Set the same as the carry bit

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.

V Set if an overflow occurs. Cleared otherwise.
C Cleared if the result is zero. Set otherwise.

Instruction Format:
15 " k] 17 n 0] B T [] -] 4 3 7 1 1)

CLTelele el el o | ™]

Instruction Fields:
Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation
Effective Address field — Specifies the destination operand. Only data alterable ad-
dressing modes are allowed as shown:

Mode | Mode Register [Addressing Mode | Mode Register
o -Dn o “&;} reg. number:Dn] W | m 000
An - = [xxxlL m o0
T am 010 | reg. number:An #idata) — —
__-;A;I: mi reqg. number:An |
- {An) 100 req. number:An] i
digAnl | 1™ reg. number An Id16.PC) = st
I‘d&M.—X‘nI 10 reg. numberAn {dg.PC.Xn} = =

NBCD NBCD

Negate Decimal with Extend

Operation: 0 — (Destination1g) - X # Destination

Assembler

Syntax: NBCD (ea)

Attributes: Size = (Byte)

Description: Subtracts the destination operand and the extend bit from zero. The op-

eration is performed using binary coded decimal arithmetic. The packed BCD result
is saved in the destination location. This instruction produces the tens complement
of the destination if the extend bit is zero, or the nines complement if the extend bit
is one. This is a byte operation only.

Condition Codes:

X Set the same as the carry bit

N Undefined

Z Cleared if the result is non-zero. Unchanged otherwise.
V' Undefined

C Set if a decimal borrow occurs. Cleared otherwise.

NOTE

Normally the Z condition code bit is set via programming before the start of
the operation. This allows successful tests for zero results upon completion
of multiple precision operations.

Instruction Format:
15 " 13 12
LLTeTe]
Instruction Fields:

Effective Address field — Specifies the destination operand. Only data alterable ad-
dressing modes are allowed as shown:

s 4 k] 2 1 o

EFFECTIVE ADDRESS
MODE | REGISTER

Register

Addressing Mode | Mode Register Mode | Mode

Dn 000 reg. number:Dn {wnx) W 1___1 000

An - - et L m 001
(Any oo reg. numberAn .llaata'- - — |
(Al + 011 | reg number:An | _ o)

;___‘ {An) 100 reg numbﬂ b o N

i [dyg.An) 101 | reg. 1‘11‘-mb¢f.hn | k‘im,P{.‘.} - I]
fdgAnXm | 110 I reg. numnur:AqJ' {dg,PC,Xn} | - y

NEGX

Negate with Extend

Operation: 0 - (Destination) — X # Destination

Assembler

Syntax: NEGX (ea)

Attributes: Size = (Byte, Word, Long)

Description: Subtracts the destination operand and the extend bit from zero. Stores the

result in the destination location. The size of the operation is specified as byte, word,
or long.

Condition Codes:

Set the same as the carry bit

Set if the result is negative, Cleared otherwise.
Cleared if the result is non-zero. Unchanged otherwise.
Set if an overfiow occurs. Cleared otherwise.

Set if a borrow occurs. Cleared otherwise.

O<NZ X

NOTE

Normally the Z condition code bit is set via programming before the start of
the operation. This allows successful tests for zero results upon completion
of multiple precision operations.

Instruction Format:

1] H 3 (13 n n L] 8 H 6 5 4 3 2 1 L}

EFFECTIVE ADDRESS
MODE | REGISTER

Instruction Fields:
Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation

23

NEGX

NOP NOP

Negate with Extend NEGX No Operation
Effective Address field — Specifies the destination operand. Only data alterable ad- Operation: None
dressing modes are allowed as shown:
. -
| Addressing Mode | Mode Register Addressing Mode | Mode Register Syntax: NOP
Dn 000 | req. number-On | {00 W m 000]
n_ T - 5 —'“. L 7 1 Attributes: Unsized
[_ﬂnr 010 reg. number:An #iel, - - it i
R = = mw-m“ idata) D ip Performs no operation. The processor state, other than the program counter,
3 ; | B is unaffected. Execution continues with the instruction following the NOP instruction
- {An) 100 reg. number:An h
fdyg.An] 10 reg. number: An N (dy5.PC . = | Condition Codes:
{dg.An Xn} 10 | reg number An (dg,PC.Xn) — — i morafecond

NOT NOT

Logical Complement

Operation: Destination ¢ Destination

Assembler

Syntax: NOT (ea)

Attributes: Size = (Byte, Word, Long)

Description: Calculates the ones complement of the destination operand and stores the

result in the destination location. The size of the operation is specified as byte, word,
or long.

Condition Codes:
B R O

Not affected

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Always cleared

Always cleared

O<MNZ X

Instruction Format:
% it} 13 7 n 0] B 1] 5 4 3 2 1]

EFFECTIVE ADDRESS
MODE | REGISTER

Instruction Fields:
Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation
Effective Address field — Specifies the destination operand. Only data alterable ad-
dressing modes are allowed as shown:

[Addressing Mode | Mode Register A ing Moda | Mode Register
On 000 reg nuﬂ@ﬂ e bW m 000
.-ﬂr.l- - -— i = o | L [xxm) L E m o
{An] _mn reg. number An | #idatal i — — 2
iAn} « on reg. numberAn ; _. L
| VA 100 fog, mumbetAp | | .
[q_";..;ni. I 0 rég num-ber An [d‘ﬁ'l_ i i e R
[topanxe | 110 | reg numoer an wrexn | = | =

Instruction Format:
5 oW B2 o w3 8

Lo v JeTo v T T

OR OR

Inclusive OR Logical

Operation: Source V Destination # Destination

Assembler OR (ea),On

Syntax: OR Dn,(ea}

Attributes: Size = (Byte, Word, Long)

Dascription: Performs an inclusive OR operation on the source operand and the des-

tination operand and stores the result in the destination location. The size of the
operation is specified as byte, word, or long. The contents of an address register may
not be used as an operand.

Condition Codes:

X N 1 v L
=T -T-Te]o
X Not affected
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared
C Always cleared
Instruction Format:
% W 3w o wm W % 8 T & 5 4 3 2 1 0
| l l T eeecTive ADDRESS)
1 o | o |0

REGISTER QF-MOODE |

MOOE REGISTER |

Instruction Fieids:
Register field — Specifies any of the eight data registers

Op-Mode field —
Byte Word Long Operation
000 001 010 {(ea)) V {tDm)) # (D)
100 101 110 ((Dn)) V ((ea)) » (ea)

24

Inclusive OR Logical

OR OR

Effective Addn:ss field — If the location specified is a source operand, only data
addressing modes are allowed as shown:

Adcessing Mode | Mode | Regater | [Addressing Mode | Mode | egster %
[o | o anmﬂ{ L teaw m o oo
| e . = TSN BTN B
U\n- l?m_ mber An # data: 1m 100 w=]
s __jffu. [reo momberan LT T
@gAn | 101 | g wmberan | | were | w | o0 |
m'{n! _J_H_D_ reg number An L [us.Férxm _111 o1t _;

If the location specified is a destination operand, only memory alterable addressing
modes are allowed as shown:

I _Addressing Mode | Mode | Register _J A ing Mode Nlm;z ; Register]

Dn . i 1 - Txxx) W 11 . 000

_An = - lexxl L 1m 001

(40 00 | reg. number An # data = —
I {An) - -) i
i Anl | 100 | reg number An 1
f idygAn 101 reg. number.An tdyg.PCH

Idg.An, Xni "
g.An, Xn 1] | _reg. number A_r:_‘ Idg PC.Xn) - -

Notes:

1. If the destination is a data register, it must be specified using the destination Dn
mode, not the destination (ea) mode.

2. Most assemblers use ORI when the source is immediate data.

ORI ORI

Effective Address field — Specifies the destination operand. Only data alterable ad-
dressing modes are allowed as shown:

Inclusive OR

ORI ORI

Inclusive OR

Operation: Immediate Data V Destination # Destination

Assembler

Syntax: ORI #(data).(ea)

Attributes: Size = (Byte, Word, Long)

Description: Performs an inclusive OR operation on the immediate data and the des-

tination operand and stores the result in the destination location. The size of the
operation is specified as byte, word, or long. The size of the immediate data matches
the operation size.

Condition Codes:

X N B
| G T S
X Not affected
N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Always cleared
C Always cleared

]

Instruction Format:

15 L] (+] [} " 10 8 L] 1 L 5 4 3 ? 1 o

EFFECTIVE ADDRESS
SiZE 1
ek _MODE | BEGISTER
i WORD DATA (16 BITS| BYIE DATA (8 BITS!

| LONG DATA (32 BITS) =

Instruction Fields:
Size field — Specifies the size of the operation.
00 — Byte operation.
01 — Word operation.
10 — Long operation.

ORI
to CCR

ORI
to CCR

Inclusive OR Immediate
to Condition Codes

p Mode | Mode I[Register | A Mode | Mode Register Opecit Source V CCR ¢ CCR
Dn 000 | reg number Dn nwx) W 111 000
An - | — fnxn) L m o0 A bl
1Ani 010 | reg. number An #idatar = P Syntax: ORI #{data),CCR
e L, e rumbel Ar Attrib Size = (Byte)
1An1 i 100 req numner'_An
{dygAni V1 | reg. rumbecian | 1d16.PCH = Descripti Performs an inclusive OR operation on the immediate operand and the
(dg.An,Xn) 10 | reg. number An | (dg.PC.Xn} — - condition codes and stores the result in the condition code register (low-order byte
T N of the status register). All implemented bits of the condition code register are affected.
Immediate field — (Data immediately following the instruction): Condition Codes:

If size = 00, the data is the low-order byte of the immediate word
If size = 01, the data is the entire immediate word
If size = 10, the data is the next two immediate words

X Set if bit 4 of immediate operand is one. Unchanged otherwise.
N Set if bit 3 of immediate operand is one. Unchanged otherwise.
Z Set if bit 2 of immediate operand is one. Unchanged otherwise.
V Set if bit 1 of immediate operand is one. Unchanged otherwise.
C Set if bit 0 of immediate operand is one. Unchanged otherwise.

Instruction Format:

1% " 1 17 "] 9 L] 7 § 5 Ll i ? 1 o
[aleo e e |o]oJoloeo ool [1frJ1Telo]
s oo fofJofo]olol] BYTE DATA 18 BITS) |

25

ORI ORI
to SR Inclusive OR) diate to the S Regist to SR

[Privileged Instruction)

PEA Push Effective Address PEA

Operation: Sp - 48 SP; (ea) » (SP)

Assembler
Operation: If supervisor state Syntax: PEA (ea)
then Source V SR ¢ SR <
else TRAP Attributes: Size = (Long)
Assembler Description: ’ Computes the effective address and pushes it onto the stack. The effective
Syntax: ORI #(data),SR address is a long word address.
Attributes: Size - (Word) Condition Codes:

Description: Performs an inclusive OR operation of the immediate operand and the
contents of the status register and stores the result in the status register. All imple-
mented bils of the status register are affected.

Condition Codes:

Set if bit 4 of immediate operand is one. Unchanged otherwise.
Set if bit 3 of immediate operand is one. Unchanged otherwise.
Set if bit 2 of immediate operand is one. Unchanged otherwise.
Set if bit 1 of immediate operand is one. Unchanged otherwise,
Set if bit 0 of immediate operand is one. Unchanged otherwise.

O<MNZ X

Instruction Format:

5 " 13 7 n] 9 3 7]] i 3 H 1 L]
l—n__n P DR RS I T I A A T A T
— WORD DATA (16 BITS))]]

R Es ET Reset External Devices R ES ET

|Privileged Instruction}

Operation: If supervisor state
then Assert RESET Line
else TRAP

Assembler

Syntax: RESET

Attributes: Unsized

Description: Asserts the RESET signal for 124 clock periods, resetting all external de-
vices. The processor slate, other than the program counter, is unaffected and execution
continues with the next instruction.

Condition Codes:
Not affected

Instruction Format:

W oW B O oA W W W W O W W @
T T T O O Falalale]olels |

Not affected

Instruction Format:

15 [} Lk ir n [} q 8) B L] L] 3 ? | [}

‘ K | P 1 QT,H{.B f i l u.‘ ; |-'I | EFFLCTIVE ADDRLSS]

| MODE | memsieR

Instruction Fields:

Effective Address field — Specifies the address 1o be pushed onto the stack. Only
control addressing modes are allowed as shown:

Addressing Mode | Mode n-gim:_ | Addressing Mode | Mode Register
Ll Dn - | o | L W m 000
An — — fxxx| L m ool]
(L] 0e req. number:An N ;;d;lal | = — .
(An) ~ — - . —
- (A} — -
Iy gAn) 101 | teg. number:An | ihgPC) 1 010
L idgAnXn) 110 | reg. pumber An tdg,PC. Xn} m o 'E

ROL ROL
ROR Rotate (Without Extend) ROR

Operation: Destination Rotated by (count) # Destination
Assembler ROd Dx,Dy
Syntax: ROd #(data).Dy

ROd (ea)

where d is direction, L or R

Attributes: Size = (Byte, Word, Long)

Description: Rotates the bits of the operand in the direction specified (L or R). The

extend bit is not included in the rotation. The rotate count for the rotation of a register
is specified in either of two ways:

1. Immediate — The rotate count (1-8) is specified in the instruction,

2. Register — The rotate count is the value in the dala register specified in the

instruction, modulo 64.

The size of the operation for register destinations i1s specified as byte, word, or long.
The contents of memory, (ea); can be rotated one bit only, and operand size is restricted
to a word.
The ROL instruction rotates the bits of the operand to the left; the rotate count de-
termines the number of bit positions rotated. Bits rotated out of the high-order bit go
to the carry bit and also back into the low-order bit.

[::}———i---llﬁﬁlll*—J

The ROR instruction rotates the bits of the operand to the right; the rotate count
determines the number of bit positions rotated. Bits rotated out of the low-order bit
go to the carry bit and also back into the high-order bit,

e W

26

ROL
ROR

Condition Codes:

ROL
ROR

Rotate (Without Extend)

X N2 v 3

I

X Not affected
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared
C Set according to the last bit rotated out of the operand. Cleared when the rotate
count is zero.
| Format (Regi Rotate):
15 " 13 (] LI} n q B 7] 5 4 3 7] o
e S A e 3 . et e
) | COUNT | |
r] | il mositn | ¥ | s [o0] I SRCRIER

Instruction Fields (Register Rotate):
Count Register field:
Ifir - 0, this field contains the rotate count. The values 1-7 represent counts of 1-
7, and 0 specifies a count of 8.
Ifir = 1, this field specifies a data register that contains the rotate count (modulo
64).
dr field — Specifies the direction of the rotate:
0 — Rotate right
1 — Rotate left
Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation
ir field — Specifies the rotate count location:
Ifir - 0, immediate rotate count
Ifir = 1, register rotate count
Register field — Specifies a data register to be rotated

Instruction Format (Memory Rotate}:

1" " 13 i n [4

B 7 5 4 =) ? 1 [:]
!

L
T - !' 7 ! EFFECTIVE ADDRESS
N SR |

MODE _ HGISTER

ROXL
ROXR

ROXL
ROXR

Rotate with Extend

Operation: Destination Rotated with X by {count) # Destination
Assembler ROXd Dx,Dy
Syntax: ROXd #(data),Dy
ROXd (ea)
where d is direction, L or R
Attributes: Size = (Byte, Word, Long)
Description: Rotates the bits of the operand in the direction specified (L or R]. The

extend bit is included in the rotation. The rotate count for the rotation of a register is
specified in either of two ways:
1. Immediate — The rotate count (1-8) is specified in the instruction.
2. Register — The rotate count is the value in the data register specified in the
instruction, modulo 64.

The size of the operation for register destinations is specified as byte, word, or long.
The contents of memory, (ea), can be rotated one bit only, and operand size is restricted
to a word.

The ROXL instruction rotates the bits of the operand to the left; the rotate count
determines the number of bit positions rotated. Bits rotated out of the high-order bit
go to the carry bit and the extend bit; the previous value of the extend bit rotates into

the low-order bit.
C— !

The ROXR instruction rotates the bits of the operand to the right; the rotate count
determines the number of bit positions rotated. Bits rotated out of the low order bit
go to the carry bit and the extend bit; the previous value of the extend bit rotates into

the high order bit.
L..| I e]—l—m

ROL
ROR

ROL
ROR

Instruction Fields (Memory Rotate):
dr field — Specifies the direction of the rotate:
0 — Rotate right
1 — Rotate left
Effective Address field — Specifies the operand 10 be rotated. Only memory alterable
addressing modes are allowed as shown:

Rotate (Without Extend)

Addressing Mode | Mode | Register | ;Md!mhgmdni Mada Register
Dn = ; - ! |) W ; m 00
I = - ST TN M.
tank 010 | reg numberAn | #idata) | - = |
LAn) = on reg. number An l - - | e 1I
- 1an} w00 | reg number An | i
(dyg.An) 101 | reg number An | (d15.PCI = i
Idg.An Xn) 10 | reg. number.An | Idg.PC.Xn1 1 - L - :

ROXL
ROXR

ROXL
ROXR

Condition Codes:

Rotate with Extend

X W o N c
[T To]
X Set to the value of the last bit rotated out of the operand. Unaffected when the
rotate count is zero.
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared
C Set according to the last bit rotated out of the operand. When the rotate count is

zero, set to the value of the extend bit.

Instruction Format (Register Rotate):
[PR e T TR ™

Lol] fe]

Fields (Regi R]|
Count/Register field:
If iir = 0, this field contains the rotate count. The values 1-7 represent counts of 1-
7, and 0 specifies a count of 8.
If ifr = 1, this field specifies a data register that contains the rotate count (modulo
64).
dr field — Specifies the direction of the rotate:
0 — Rotate right
1 — Rotate left
Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation
i'r field — Specifies the rotate count location:
If i/r = 0, immediate rotate count
If ifr = 1, register rotate count
Register field — Specifies a data register to be rotated

3 L} 1 1 5 4 3 2 1 (]

COUNT!
REGISTER

REGISTER

Instruction Format (Memory Rotate):

1] § 1 3 T 1 a
1

" EFFECTIVE ADDRESS

MODE REGISTER

Instruction Fields (Memory Rotate):
dr field — Specifies the direction of the rotate:
0 — Rotate right
1 — Rotate left

27

ROXL
ROXR

ROXL
ROXR

Rotate with Extend

RTD RTD

Return and Deallocate

Operation: (SP)# PC; SP + 4 + de SP
Effective Address field — Specifies the operand to be rotated. Only memory alterable Assembler
addressing modes are allowed as shawn- Syntax: RTD #(displacement)
| Addressing Mode | Mode T Register] ;__A_;idmsin.g Mode | Mode | Register Attributes: Unsized
.o+ =1 = ! bl W [000 |
L An |>_ - | A5 bl " 001 Dasnriptipn: Pulls the program counter value from the stack and adds the sign-extended
am nm_" tot moREer A " v | — - 16-bit displacement value to the stack pointer. The previous program counter value
F 1An) 9 number An | | is lost.
~am nu_‘nber an L) Condition Codes:
| idigAn) Jl number: nﬂ | ihgpCH E = Not affected
Idg.An Xn| Z HD reg. number. An i idg.PC.Xn} — -
T = ; = - I Format:
) L= B n 1] 9 L] 7 3 5 4 3 2 l 0
}_| oJo T v v vTeTe T v v [vJTel 1o ou|
IR Y _ DISPLACEMENT (16 BiTS)
Instruction Field:
Displacement field — Specifies the twos complement integer to be sign extended and
added to the stack painter
RTE Return from Exception RTE RTR Return and Restore Condition Codes RTR
(Privileged Instruction)
) Operation: (SP) # CCR; SP + 2 ¢ SP;
Operation: If supervisor state (SP)#PC; SP + 44 SP
then (SP) ¢ SR; SP + 2 ¢ SP; (SP) » PC;
SP + 49 SP; Assembler
restore state and deallocate stack according to (SP) Syntax: ATR
else TRAP
Attributes: Unsized
Assembler
Syntax: RTE Description: Pulls the condition code and program counter values from the stack. The
; previous condition codes and program counter values are lost. The supervisor portion
Attributes: Unsized of the status register is unaffected.
Description: Loads the processor state information stored in the exception stack frame Condition Codes:

lacated at the top of the stack into the processor. The instruction examines the stack
format field in the format offset word to determine how much information must be
restored.

Condition Codes:
Set according to the condition code bits in the status register value restored from the
stack

Instruction Format:

15 " 13 12 L1} n 3 1] 7 [] 4 k) ? 1 [}
ol Jeole i Tilele [T il vlelel 1T}
Format/Offset word lin stack frame)
5 L} ik) 3 " 0 9] 7 (] 5 L] 3 2 1 o
[roamar Tol o]) VICTOR OFFSET

Format Field of Format/Offset Word:
Contains the format code, which implies the stack frame size {including the format/
offset word):
0000 — Short Format, removes four words. Loads the status register and the program
counter from the stack frame.
1000 — MCEB010 Long Format, removes 29 words
Ary other value in this field causes the processor to take a format error exception,

Set to the condition codes from the stack

Instruction Format:

15 " 13 I?

28

RTS

Return from Subroutine

Operation: {SP)# PC; SP + 49 SP
Assembler

Syntax: RTS

Attributes: Unsized

Description:

PuI‘Is the program counter value from the stack. The previous program
counter value is lost.

Condition Codes:
Not affected

Instruction Format:

15 L] 3 1 n m 9 L] 7 B 5 L 3 2

[o]

Scc Scc

Set According to Condition

Operation: |f Condition True
then 1s # Destination
else Os # Destination
Assembler
Syntax: Sce (ea)
Attributes: Size = (Byte)
Description: Tests the specified condition code; if the condition is true, sets the byte

specified by the effective address to TRUE (all ones). Otherwise, setslt_hal byte to
FALSE (all zeros). Condition code cc specifies one of the following conditions:

CC carry clear 0100 C LS loworsame 0011 C+4Z _
Ccs carx set 0 C LT less than 1101 NV + NV
EQ equal o 2 Ml minus 11011 N
F never true o001 0 e NE not equal 0110 2
GE greater or equal 1100 NV NV _ PL plus 1010 N1
GT greater than 1110 NeWeZ + NeVeZ T always true 0000 V
HI high 0010 C-Z2 _ VC overflow clear 1000 V
LE less or equal 11T Z+ NV + N VS overflow set 1001
Condition Codes:
Not affected
Instruction Format:
% owoowoo12oonmoow 9 B 1 & 5 4 3 2 .
: [. EFFECTIVE ADDRESS]
o I o ! | CONDITION i 1] MOE | REGISTER

Instruction Fields: - . .
Condition field — The binary code for ane of the conditions listed in the lablq
Effective Address field — Specifies the location in which the true/false byte is to be
stored. Only data alterable addressing modes are allowed as shown:

[Addressing Mods | Mode | Register '_| [ad Mode | Mode Rogister
:_T.__-Ein ~ 000 reg. number.Dn | | [xxx} W 11 000
An - = | | euxl L 1 001
[(An] Mo reg. numberAn | ’_Jfaata\ o - |
{Ang+ [14} reg numb«:)\l_\ |
[An] 100 reg number:An | —] .
idygAn) 101 reg_number An_| {dy5.PC} i o |
tdg.An,Xn) e reg. number-An | I_ds.PC.)(n: - —

Note: A subsequent NEG.B instruction with the same effective address can be used
to change the Scc result from TRUE or FALSE to the equivalent arithmetic value
(TRUE =1, FALSE - 0). In the MC68000, MC68HC000, and MC6B008 a memory
destination is read before it is written to.

RTS

SBCD

Subtract Decimal with Extend SBCD
Operati Destination1p - Source1g - X # Destination
Assembler SBCD Dx,Dy
Syntax: SBCD - (Ax), - (Ay)
Attributes: Size = (Byte)
Description: Subtracts the source operand and the extend bit from the destination op-

erand and stores the result in the destination location. The subtraction is performed
using binary coded decimal arithmetic; the operands are packed BCD numbers. The
instruction has two modes:
1. Data register to data register: The data registers specified in the instruction con-
tain the operands.
2. Memory to memory: The address registers specified in the instruction access the
operands from memory using the predecrement addressing mode.
This operation is a byte operation only.

Condition Codes:

X Set the same as the carry bit

N Undefined

Z Cleared if the result is non-zero. Unchanged otherwise.
V' Undefined

[

Set if a borrow (decimal) is generated. Cleared otherwise.

NOTE

Normaliy the Z condition code bit is set via programming before the start of
an operation. This allows successful tests for zero results upon completion
of multiple-precision operations.

Instruction Format:
15 " 13 12 n n 9] ¥] 5 4 3 2 1 o

[7T ol oo weosterty | + [0l [0 [’m]

REGISTER Ax

Instruction Fields:
Register Ry field — Specifies the destination register
If R'M = 0, specifies a data register
If R/M = 1, specifies an address register for the predecrement addressing mode
R/M field — Specifies the operand addressing mode:
0 — The operation is data register to data register
1 — The operation is memory to memory
Register Rx field — Specifies the source register:
If R/'M = 0, specifies a data register
If R/M = 1, specifies an address register for the predecrement addressing mode

STOP STOP

Load Status Register and Stop
(Privileged Instruction)

Operation If supervisor state
then Immediate Data # SR; STOP
else TRAP
Assembler
Syntax: STOP #(data)
Attributes: Unsized
Description: Moves the immediate operand into the status register (both user and su-

pervisor portions), advances the program counter to point to the next instruction, and
stops the fetching and executing of instructions. A trace, interrupt, or reset exception
causes the processor to resume instructions execution. A trace exception occurs if
instruction tracing is enabled when the STOP instruction begins execution. If an in-
terrupt request is asserted with a priority higher than the priority level set by the new
status register value, an interrupt exception occurs; otherwise, the interrupt request
is ignored. External reset always initiates reset exception processing.

Condition Codes:
Set according to the immediate operand

Instruction Format:

¥ W w12 nm oW s 8 1 & 5 4 1 2 1 0
[l JTeJe v T r T vJTelel v rTvTaeJal1Tw]
[IMMEDIATE DATA A u

Instruction Fields:
Immediate field — Specifies the data to be loaded into the status register

29

SUB

Subtract
Op ion: Destination - Source # Destination
Assembler SUB (ea),Dn
Syntax: SUB Dn.lea)

Attributes: Size - (Byte, Word, Long)

Desctiptior!: Subtracts the source operand from the destination operand and stores the
result in the destination. The size of the operation is specified as byte, word, or long.
The mode of the instruction indicates which operand is the source, which is the des-
tination, and which is the operand size.

Condition Codes:

Set to the value of the carry bit

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if an overflow is generated. Cleared otherwise.
Set if a borrow is generated. Cleared otherwise.
Instruction Format:

O=MNZ X

1% " 3 ” n L] 4
F |o]e i v REGISTER ‘
Instruction Fields:
Register field — Specifies any of the eight data registers
Op-Mode field —
Byte Word Long

000 001 010
100 101 10

(] 1 13 5 Ll k| 2 1 [:]

i EFFECTIVE ADDAESS
0P-MOE
- L MOOE | eesister

Operation
{(Dn)) ~ {{ea}) # (Dn)
({ea)} — ((Dn}} # (ea)

SUBA

Subtract Address

SUB SUB

SUBA gsuBI

Subtract

SuB

Ef!active Address field — Determines the addressing mode. If the location specified
is a source operand, all addressing modes are allowed as shown:

[Addressing Mods | Mode

Regiser [Adaressing Mode | Mode | Regate

On 000 reg. number:On faxx) W [m 000

An* o1 reg numberAn Ixxx].L 1m ; 001

(An} 019 reg. number An | #idata) m | 100 |

{An) + an rog_number:An | i
[== i.ﬁp_l 100 reg. numberAn - [
| ldigAn) 101 | reg. number-An | __ld1gPC) m o0
L (dg.An,Xn) 10 | reg. number .an] 1dg.PC.Xn} m |

"For byte size operation, address register direet is not allowed

If the location specified is a destination operand, only memory alterable addressing
modes are allowed as shown:

Addressing Mode —Mdulml- ing Mode | Mode

Mode I Register Register
On - | — Taxx W m) 00d
An - = | Txxx) L 1 0
{An} 010 reg. number:An _"ﬂdalal - -
[An)+ o1 reg. number:An
- [An) 100 | reg. number:An a
Idyg.Anb | 1 rég mmb«-k_n [d!s_.PCI_ - =
(dgAnXn) t 10| reg. number-An |_ idgPCXn) | — = __

Notes:
1. If the destination is a data register, it must be specified as a destination Dn
address, not as a destination (ea) address.
2. Most assemblers use SUBA when the destination is an address register, and SUBI
or SUBQ when the source is immediate data.

SuBI

Subtract Immediate SUBI

Operation: Destination - Immediate Data ¢ Destination
Assembler

Syntax: SUBI #{data),(ea)

Attributes: Size = (Byte, Word, Long)

Operation: Destination — Source # Destination

Assembler

Syntax: SUBA (ea),An

Attributes: Size = {Word, Long)

Description: Subtracts the source operand from the destination address regi and

stores the result in the address register. The size of the operation is sggcifieq as word
or long. Word size source operands are sign extended to 32-bit quantities prior to the
subtraction.

Condition Codes:
Not affected

Instruction Format:

5 W 13 @ w w 3 & 1 & 5 & 3 2 1 @
- - EFFECTIVE ADDRESS ‘
1 ! o0 ‘ 1| weesten 0P-MODE s | secsten
Op-Mode Field:
Word Long Operation
on m AN Geark # (AR

Instruction Fields: .)
Register field — Specifies the destination, any of the eight address registers
Op-Mode field — Specifies the size of the operation:

011 — Word operation. The source operand is sign extended toa lang uperand and
the operation is performed on the address register using all 32 bits.
111 — Long operation X
Effective Address field — Specifies the source operand. All addressing modes are
allowed as shown:

Mode | Register

p Subtracts the immediate data from the destination operand and stores the
result in the destination location. The size of the operation is specified as byte, word,
or long. The size of the immediate data matches the operation size.

Condition Codes:

i N B R

X Set to the value of the carry bit

N Set if the result is negative. Cleared otherwise.
Z Setif the result is zero. Cleared otherwise.

V Set if an overflow occurs. Cleared otherwise.

C Set if a borrow occurs. Cleared otherwise.

Instruction Format:

15 " 12 12 n n 9] 7 B 5 1 3 7 1 ¢

S | T HFFECTIVE ADDRESS
0 ‘ ° | 0 [% | ‘ ! ‘ 9 l 9 ST wone | ReGisTER
WORD DATA (16 BITS! BYTE DATA (8 BITS}

__LONG DATA iiz BITSI

Instruction Fields:

Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation

" Addressing Mode | Mode Register | Addressing Mode | Effective Address field — Specifies the destination operand. Only data alterable ad-
On 000 | reg number:Dn) W M 000 dressing modes are allowed as shown:
an | oo | reg numberan | | fooot n o1 [Addressing Made | Mode | Register | ing Mode | Mode | Register |
1A_n! 010 reg. number-An #(data) m 100 N on 000 reg. number Dn [xxx] W amn 000 |
(nt 011 | reg number An An — - L el _m 001
(An) 100 reg. number:An {An} = g_‘O _reg num_hu_l_A_n_ #idaa; ol | =ity
Idls.AnF_ ‘0‘__'92 ‘numl;: idg.PC. m a10 {An] + 011 reg. number An o
T g AnXnl 110 | rog. number:an @gPCXnl | | om ~tAm | 100 | reg numberan . _ .
(dygAn) 101 | reg number:An (dh6.PCI - -
Idg.An Xn) 110 reg. number An __ 1dgPC.Xn) - —

Immediate field — (Data immediately following the instruction}
If size = 00, the data is the low order byte of the immediate word
If size = 01, the data is the entire immediate word
If size = 10, the data is the next two immediate words

30

S U BQ Subtract Quick

SuBQ

Operation: Destination Immediate Data # Destination

Assembler

Syntax: SUBQ #(data),(ea)

Attributes: Size - (Byte, Word, Long)

Description: Subtracts the immediate data {1-8) from the destination operand. The size

of the operation is specitied as byte, word, or long. Only word and long operations
are allowed with address registers, and the condition codes are not affected. When
subtracting from address registers, the entire destination address register is used,
regardless of the operation size.

Condition Codes:

Ron Wooo W Wi €
NS B EL

Set to the value of the carry bit

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if an overflow occurs. Cleared otherwise.
Set if a borrow occurs. Cleared otherwise.

ONZx

Instruction Format:

15 (L] 13 12 " n 9] T b 5 4 i 2 1 o
5

J ! I n- i i | EFFECTIVE ADDRESS
l ; N | MOOE [meeisten

Instruction Fields:

Data field — Three bits of immediate data; 1-7 represent immediate values of 1-7,.and
0 represents 8

Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation

Effective Address field — Specifies the destination location. Only alterable addressing
modes are allowed as shown:

[Addressing Mode | Mode | Regiter | | Addressing Mods | Mode | Register

- _OI"_ i _QUU reg |'umﬂ:l ‘) fnnmt W g] m ! 000
L _Ant _1 001 | reg number An | 1 {xxl L T &
A 010 | reg. number An T |

ot on [g mumoeran | [i

- tAnt | 100 umber An

digdnt 1§ 10} . rep. number:An | {d1g.FC) |]

L Gaganxor 110 | ren mmoer an | wgPCxn | =

*Word and Long only

SWAP

Swap Register Halves

Operation: Register [31:16) 4 Register [15:0]

Assembler

Syntax: SWAP Dn

Attributes: Size = (Word)

D iption: Exch the 16-bit words (halves) of a data register

Condition Codes:

EREREANNEN

X Not affected)

N Set if the most-significant bit of the 32-bit result is set. Cleared otherwise.
2 Set if the 32-bit result is zero, Cleared otherwise.

V Always cleared

C Always cleared

Instruction Format:

15 1] 1 n "

LT LD Lo e e e [[v]

Register field — Specifies the data register to swap

Subtract with Extend S U BX

SUBX

Operation: Destinati Source - X ¢ Destination

Assembler SUBX Dx,Dy

Syntax: SUBX —(Ax), —(Ay)

Attributes: Size = (Byte, Word, Long)

Description: Subtracts the source operand and the extend bit from the destination op-

erand and stores the result in the destination location. The instruction has two modes:
1. Data register to data register: The data registers specified in the instruction con-
tain the operands.
2. Memory to memaory: The address registers specified in the instruction access the
operands from memory using the predecrement addressing mode.
The size of the operand is specified as byte, word, or long.

Condition Codes:

X Set to the value of the carry bit

N Set if the result is negative. Cleared otherwise.

Z Cleared if the result is non-zero. Unchanged otherwise.
V Set if an overflow occurs. Cleared otherwise.

C Set if a carry occurs. Cleared otherwise.

NOTE

Normally the Z condition code bit is set via programming before the start of
an operation. This allows successful tests for zero results upon completion
of multiple-precision operations.

Instruction Format:

15

[T

1 " n 4 8 1 3 5]
REGISTER Ry T 1 |

I S Y |
BM | REGISTER R

T T T.

Instruction Fields:
Register Ry field — Specifies the destination register:
If A'M = 0, specifies a data register
If R/M = 1, specifies an address register for the predecrement addressing mode
Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation
R/M field — Specifies the operand addressing mode:
0 — The operation is data register to data register
1 — The operation is memory 10 memory
Register Rx field — Specifies the source register:
If R'M = 0, specifies a data register
If R/M = 1, specifies an address register for the predecrement addressing mode

TAS TAS

Test and Set an Operand
Operati Destination Tested # Condition Codes; 1 # bit 7 of Destination
Assembler
Syntax: TAS (ea)
Attributes: Size = (Byte)
Description: Tests and sets the byte operand addressed by the effective address field.

The instruction tests the current value of the operand and sets the N and Z condition
bits appropriately. TAS also sets the high order bit of the operand. The operation uses
a read-modify-write memory cycle that completes the operation without interruption.
This instruction supports use of a flag or semaphore to coordinate several processors.

Condition Codes:

5 08 R

Not affected

Set if the most significant bit of the operand is currently set. Cleared otherwise.
Set if the operand was zero. Cleared otherwise.

Always cleared

Always cleared

v c
o | o |

ODO<NZX

Instruction Format:

1% 1] 12

noonnnnn

Effective Address field — Specifies the location of the tested operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode | Mode

1 6 5 q 3 1 1 L
1

T | EFFECTIVE ADDRESS

]
| MODE |

it
0
; REGISTER

Register

Addressing Mode | Mode Register

Dn | oo reg. Aumber Dn | [=xxlW m]

-Al'l | = - ; LI m 001
{An) e reg. numberAn weodatar - - |

[An) + o1 rey. number An)
L - [An) 100 reg, numberAn _

(dqg.An) 1 reg. llumb_s_l_'hn {d15.PCI - | = 1
ldg.An Xn} 110 reg. num‘barﬂ.n | {dg,PC.Xn) - '

31

TRAP TRAP

Trap

Operation: 1# 5 bitof SR

SSP - 2 # SSP; Format:Offset ¢ (SSP); — MCE8010 only

S5P - 4 SSP; PC # (SSP); S5P - 2 ¢ S5P;

SR # (SSP); Vector Address # PC
Assembler
Syntax: TRAP #{vector)
Attributes: Unsized
Description: Causes a TRAP #(vector) exception. The instruction adds the immediate

operand (vector) of the instruction to 32 to obtain the vector number. The range of
vector values is 0-15, which provides 16 vectors.

Condition Codes:
Not affected
Instruction Format:

%] (k] 17 n 0 9 L] T] 5 L]

ool e T T v Tele] i Tel0]

3 1

VECTOR _

]

Instruction Fields:
Vector field — Specifies the trap vector to be taken

TST TST

Test an Operand

Operation: Destination Tested # Condition Codes

Assembler

Syntax: TST (ea)

Attributes: Size = (Byte, Word, Long}

Description: Compares the operand with zero and sets the condition codes according

to the results of the test. The size of the operation is specified as byte, word, or long.

Condition Codes:

XN z v
- N N T

¥ Not affected

N Set if the operand is negative. Cleared otherwise.
Z Setif the operand is zero. Cleared otherwise.

V Always cleared

C Always cleared

Instruction Format:

1 k) F)

EFFECTIVE ADDRESS

MODE | REGISTER

"N 14 13 12 " 10 9

BobpaoT

i B 2

Instruction Fields:

Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation

Effective Address field — Specifies the destination operand. If the operation size is
word or long, all addressing modes are allowed. If the operation size is byte, only
data addressing modes are allowed as shown:

Addressing Mode | Mode | Register '_ ressing Mode | Mode g Hqiil:f__l
) B D00 4 reg number Dn Lexxt W 1 000 2
| -) — 1 '7_1,«1& 1 m o
} “An) uw_‘_ r:“q__'u;r.Tuer_An__l *_rE“ = .| = |
T R Y B R —
1An i 100 .neg number An ;__ 1
[ihgam 101, | ag, raber-an L igPCl | M 010
’> :s!a_mu.l :—_!;D_ ;e;nur __ idgPC.xnl I m on

TRAPV TRAPV

Trap on Overflow

Operation: If V then TRAP

Assembler

Syntax: TRAPV

Attributes: Unsized

Description: If the overflow condition is set, causes a TRAPY exception (vector number

7). 0f tf\e overf_lcw condition is not set, the processor performs no operation and
execution continues with the next instruction,

Condition Codes:
Not affected
Instruction Format:
5 " 13 ” n 10 £l 3 7 6 5 . 3 2 1 o
Lol v Tol o v v ool T r[Tal]]s]

UNLK UNLK

Unlink

Operation: An ¢ SP; (SP) ¢ An; SP + 4 8 SP

Assembler

Syntax: UNLK An

Attributes: Unsized

Description: Loads the stack pointer from the specified address register then loads the

address register with the long word pulled from the top of the stack.

Condition Codes:
Not affected
Instruction Format:

e
_REGISTER

=

-
L

Instruction Fields:
Register field — Specifies the address regisier for the instruction

32

